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Abstract

Behavioral Types: A New Perspective on Estimating Treatment Effects in Social Science
Experiments with Binary Responses

by

David GrahamSquire

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Deborah Nolan, Chair

In the year 2000, Gerber and Green published the results of a field experiment which
examined the impact of electoral campaigns on voter participation. Since this landmark
work, more than one hundred similar studies have appeared in the political science literature.
These randomized controlled trials are usually conducted within get-out-the-vote (GOTV)
drives seeking to increase voter turnout. The surge in GOTV experiments was partly due to
a statistical innovation that preceded Gerber and Green’s publication, the average treatment
effect for the treated (ATT), which allowed researchers to compare directly those treated to
a similar group that was assigned to the control.

In this research we focus on settings common to many social science field experiments
such as those of GOTV studies, where participants may comply, or not, with the treatment
protocol assigned by the experimenter. For experiments with binary outcomes, we show that
each individual in the study may be classified as one of a finite number of distinct types.
We call these behavioral types because they characterize the individual’s complete reaction,
their measured response and how they receive treatment, to the assignment of each possible
experimental group. In this context, the data is generated by randomly allocating these var-
ious behavioral types to the different levels of treatment. Thus, the model is parameterized
by the unknown proportions of the different behavioral types so that many statistical aspects
of the experiment, such as commonly studied average treatment effects, may be written as
a function of these proportions.

Viewing the data as generated by these behavioral types changes the analysis of the
experiment in two ways. First, it changes the perspective on what is being estimated.
Instead of finding a particular treatment effect, the ultimate goal can be seen as estimating
proportions of behavioral types. With this frame of reference, the effect of a certain treatment
will be most accurately represented as the fraction of the experimental sample for which the
treatment has an effect. Second, by clarifying the underlying data generating process, a
behavioral-types approach directs the resulting statistical analysis.
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We use a well cited example to introduce behavioral types before providing formal defi-
nitions. We present the ATT as a case study for how to apply a behavioral-types approach
for a design known to many social science researchers. The understanding of the data gener-
ating process allows us to evaluate the bias and variance of the ATT estimator, and we show
the variance depends on the choice of the sampling assumptions. We then provide rigorous
definitions of a behavioral type and of restrictions which reduce the number of behavioral
types in a population to a number where the proportions of each type may be estimated.
We present three experimental designs and present a strategy to identify the proportions of
each type and elucidate how treatment effects may be found from the proportions.

A behavioral-types approach is well suited to multi-treatment experiments because it
distills often complex designs into an estimation problem of a manageable number of types.
We apply the behavioral types approach to four published social science field experiments
involving multiple levels of ordered treatment. For each, we show how the interpretations
and the statistical analyses differ with a behavioral types approach, and can lead to different
conclusions. Through the applications we illustrate how behavioral types provides insight
into a range of experimental designs, such as those with spillover effects or partial ordering
of treatment levels.

For two of the four applications we further examine the issue of joint significance by
constructing multi-dimensional confidence regions for the proportion of behavioral types.
We find that normal approximation methods perform poorly, but the shortcomings can be
corrected by bootstrap methods. However, even the bootstrap regions may not attain the
desired coverage levels, so we adjust our regions using a double bootstrap. We discuss other
methods that merit further exploration.
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Chapter 1

Introduction

In the year 2000, Gerber and Green published the results of a field experiment which exam-
ined the impact of electoral campaigns on voter participation. Since this landmark work,
more than one hundred similar studies can be found in the political science literature. These
randomized controlled trials, where the subjects are registered voters, are usually conducted
within get-out-the-vote (GOTV) drives seeking to increase voter turnout. For those assigned
to treatment, campaigns attempt some form of contact via mail, phone, face-to-face con-
versation or social media while voters assigned to control are not contacted. The outcome,
whether a subject votes or not, may be determined by examining publicly available voting
records after the elections. The studies address a number of practical questions. Which
medium of contact is the most cost effective for turning out additional votes? How close
to Election Day should contact be made? What form of outreach works best for targeted
demographic groups such as youth, women of color, or Latinos? The experiments are also
outside of academia as campaigns conduct internal studies, such as testing different messag-
ing strategies during a primary to see which will be most useful during a general election.

This surge in GOTV experiments was partly due to a statistical innovation that preceded
Gerber and Green’s publication: the average treatment effect for the treated (ATT). When
some of the subjects assigned to treatment do not receive the treatment, statisticians have
long warned about comparing the entire control group to the subset of the treatment group
actually treated, as estimated effects will be impacted by selection bias. The remedy to
this noncompliance was to compare the entire control group to the entire treatment group,
whether the treatment was received or not. This intention-to-treat (ITT) effect measures
the impact of being assigned to treatment. However, the average treatment effect for the
treated (ATT) allowed researchers to compare directly those treated, on average, to a similar
group that was assigned to the control, to obtain the average treatment effect on the treated.
The innovation of ATT arose from applying the potential outcome framework of Neyman
and Rubin (see Holland, 1986) to settings with noncompliance. With a few reasonable
assumptions, the ATT may be found in all designs with a control and single treatment when
subjects either are treated, or are not treated and effectively receive the control protocol.
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This is a common setting for experiments in the social sciences, as well as medicine, since for
ethical reasons, subjects must be allowed to not comply with the assigned treatment. For
GOTV experiments, subjects who are assigned to treatment are reached or they are not.
That is, the “treated” are subjects who the campaign was able to successfully contact. Thus
the ATT provides a measure of the increased voter turnout of those actually reached, a more
direct measure of the impact of the campaign than the ITT effect. Gerber and Green were
the first political scientists to recognize the usefulness of the ATT and how researchers could
carry out experiments within existing GOTV campaigns.

Our work focuses on experiments with a finite number of experimental groups, where
subjects may or may not comply with the assigned treatment, and the special case where
outcomes are binary (as they are in GOTV campaigns). Our main finding is that in this
context we may group subjects by their compliance behavior to treatment assignment and
their response behavior to treatment assignment, so that every subject may be classified
as one of a finite number of distinct types. We call these “types” behavioral types. A
behavioral type thus refers to an intrinsic behavioral trait of an individual, describing how
they receive and respond to the different treatment assignments. Furthermore, the observed
data is generated by a simple model which is completely parameterized by the proportion
of each of the behavioral types in the experimental sample. This brings a new perspective
on properties of interest, such as the ITT or ATT, as they may be viewed as a function of
the proportion of these behavioral types. From this perspective, we show,causal effects are
less about the impact of a certain intervention on a population and more about the number
of individuals in the population whose compliance and response behaviors lead them to be
impacted. The behavioral-types approach applies to a number of settings, as long as there is
a finite number of treatment conditions and a finite number of ways for subjects to comply
with their assigned treatment. We demonstrate the wide applicability of this approach in a
series of examples.

In Chapter 2 we review the potential outcomes framework and delve into the derivation
of the ATT in the special case when outcomes are binary. We use the well-cited work of
Angrist, Imbens, and Rubin (1996) as a case study to introduce the notion of behavioral
types. In this setting, with a control, one treatment and the presence of noncompliance,
every subject may be associated with one of five distinct types. We uncover how the ATT
and ITT may be expressed as the proportions of these behavioral types.

In Chapter 3 we focus on the properties of the ATT estimator. We derive the bias of the
estimator and examine it’s variance, which hinges on the assumption of whether the control
and treatment are drawn from an infinite superpopulation or if treatment is assigned, without
replacement, given a finite sample. We quantify how the asymptotic variance differs under
the two assumptions, again in terms of the proportions of behavioral types. However, even
when the assumptions lead to a difference in the calculated variance, both assumptions lead
to similar conclusions about the significance of the ATT estimate. That is, a difference in the
variance estimators is found when p-values are very small. We also examine an alternative
estimate of the causal effect based on randomization inference, which has fewer assumptions
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and does not require large samples.

In Chapter 4 we present a rigorous definition of a behavioral type. There is an upper
limit to the number of unique behavioral types, which may exist, in any experimental setting.
Many of the assumptions made by researchers, such as those used to derive the ATT, may
be seen as restrictions on the kinds of behavioral types, that may exist. These restrictions
are key to limiting the number of unique behavioral types in an experiment to a manageable
number so their proportions may be estimated. We present a methodical procedure to deter-
mine the number of distinct behavioral types in an experiment and identify the restrictions
that eliminate certain types. We apply this method to three experimental designs, which we
present as case studies. First, we consider the ATT setting of the previous chapter and show
how the step-by-step process leads to the same five behavioral types identified in Chapter 2.
Second, we choose a design with multiple levels of treatment, where the levels have a clear
ordering. Third, we examine a proposed GOTV experiment that allows for the measurement
of spillover effects. In each case study we show how the parameters of most interest may be
expressed as functions of the proportions of the behavioral types and how these proportions
may be estimated directly from the data.

In Chapter 5 we apply our methods to experiments with multiple levels of treatment. A
behavioral-types approach is well suited to multi-treatment experiments because it distills
these often complex designs into an estimation problem of a manageable number of types. We
choose four published social science field experiments and re-analyze them through the lens
of behavioral types, comparing our conclusions to those of the authors. The first experiment
contains treatments that are ordered in terms of the severity of the intervention, from weakest
to strongest, and this order is seen in the observed response rates for each treatment group.
The authors arrive at unambiguous conclusions, and our analysis concurs. The second
experiment has a similar design, but the conclusions are not nearly as strong as those of the
first experiment. While we agree with the authors about the significance of the estimated
effects, we differ on our interpretation of these effects due to our focus on behavioral types.
What they see as only one of the two treatments having an effect we view as at least of
two behavioral types must exist. The third experiment uses a complex design to estimate
indirect or spillover effects. Though we are not able to identify all of the behavioral types
proportions, our analysis leads to stronger evidence for spillover effects than the analysis of
the authors. The fourth experiment is the only one of the four to involve noncompliance
and is further complicated by a partial ordering of the treatments. The data needed to
carry out an analysis with behavioral types is unavailable, but we show how such an analysis
could be conducted if the observed response rates were summarized by treatment assigned
and treatment received. For all four experiments, the behavioral-types approach results in
inference of multiple parameters, which raise questions of joint significance. We address
these concerns in the next chapter.

In Chapter 6 we examine the issue of joint significance by constructing multi-dimensional
confidence regions for the behavioral types proportions. We take two of the experiments
from Chapter 5 to use as case studies. We find that normal approximation methods perform
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poorly, but the shortcomings can be corrected by bootstrap methods. However, even the
bootstrap regions may not attain the desired coverage levels, so we further adjust our regions
using a double bootstrap. We briefly discuss three other promising methods that merit
further exploration.

In Chapter 7 we draw conclusions, note areas which could be improved, and discuss
additional research possibilities.

Though we initially focused on the ATT, as it is an application well known by many
social science researchers, the behavioral-types approach is quite general. Our aim is to
demonstrate its applicability in a wide range of experimental settings: with noncompliance,
multiple levels of treatment, partial orderings of the treatments, partial compliance, and
designs which allow the measurement of indirect or spillover effects. In GOTV field exper-
iments researchers often use some sort of linear modeling to address non-standard designs.
Our hope is that rather than rely on these rather strong modeling assumptions, social sci-
ence researchers analyzing data with binary outcomes can begin to view their research with
behavioral types in mind. This approach is much less model dependent, so it can result in
more persuasive conclusions and generate a deeper understanding of the underlying data
generating process.
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Chapter 2

Revisiting Potential Outcomes with
Binary Responses

In randomized controlled trials (RCT), the difference between the observed responses of the
treatment and control groups is caused by some combination of a true causal effect of the
treatment and by the random assignment, which may lead to an imbalance in the average
responses of the two groups even when the treatment has no effect.

The potential outcomes framework provides a mathematically rigorous definition of the
average causal effect of a treatment and describes how it can be estimated from an experi-
ment. The roots of the field began with Neyman (1923) who described the basis of causal
inference from agricultural experiments. An important innovation, most widely attributed
to Angrist and Imbens (1994), allowed for the measurement of the causal effects without
requiring all subjects to comply with the assigned treatment. This innovation, the average
treatment effect for the treated (att), isolates the impact of the treatment to only those who
receive the treatment and has been a breakthrough for social science field experiments, where
noncompliance is necessary for ethical studies with human subjects.

In this chapter we show that for an RCT where subjects may not comply with treatment,
and where responses are binary, we may classify every individual as belonging to one of a
finite number of types which leads to a novel parameterization of the model. We begin by
describing the potential outcomes framework underpinning the estimates of causal effects.
When outcomes are binary, we show that each individual in the experiment may be charac-
terized as a certain “type” (for example, individuals who comply with whichever treatment
is assigned and always have a positive response). We call these different types of individuals
behavioral types and show that the proportion of the behavioral types in the experimental
sample may be used to parameterize the underlying model. In this context, treatment ef-
fects such as the att may be interpreted as proportions of these types and we demonstrate
how these proportions may be identified from the observed data. Our description in this
chapter is more informal to make concepts more accessible. We develop precise definitions
in Chapter 4.
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The paper by Angrist and Imbens (1994) was followed two years later by Angrist et al.
(1996), a longer exposition of the 1994 publication, written more explicitly within the context
of potential outcomes. The follow-up publication also identified the assumptions needed for
a causal interpretation of the estimator, âtt, to be plausible. In many ways this chapter
mirrors the second article as we adopt its notation and restate a number of its assumptions,
restricted to the case when response values are binary.

Though we present our findings in general terms, a widely used application has been to
measure the impact of get-out-the-vote (GOTV) campaigns. Gerber and Green (2000) were
early to apply estimates of att to the GOTV setting, and their landmark study has spurred
over a hundred field experiments on electoral strategy (see Bedolla and Michelson, 2012).
We often cite these studies in our examples.

2.1 Potential Outcomes and the Neyman-Rubin

Causal Model

The basis of the potential outcome framework was first described by Neyman (1923), further
clarified by Rubin (1974) and is often referred to as the Neyman-Rubin Causal Model as
dubbed by Holland (1986). The key feature of the framework is discerning the source of
randomness in the observed data. To highlight this we follow a common notation convention
where random quantities are represented with uppercase symbols and non-random quantities
such as fixed sample sizes and parameters are written in lowercase.

Consider a sample of n individuals participating in an experiment where each is assigned
to treatment or control. Let Zi be an indicator of whether individual i was randomly assigned
to treatment. At this point we assume perfect compliance with treatment assignment, that
is, each subject assigned to treatment receives the protocol of the treatment group and
each subject assigned to control receives the protocol for the control group (we discuss
imperfect compliance, where there is noncompliance for some subjects in the next section).
Each individual is associated with an observed outcome, Yi, which is measured from the
experiment. In Neyman’s framework each individual has two intrinsic potential outcomes,
yi1 and yi0, or yiz, where z denotes the receipt of treatment. The observed outcome is

Yi = yi1Zi + yi0(1− Zi). (2.1)

Of the quantities in Equation 2.1, the only source of randomness comes from the Zi. With
this understanding of how the observed data is generated, we define the treatment effect for
individual i to be yi1 − yi0 and the sample’s average treatment effect (ate) as

ate ≡ 1

n

n∑
i=1

(yi1 − yi0)

=
1

n

n∑
i=1

yi1 −
1

n

n∑
i=1

yi0. (2.2)
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This is the difference between the average potential outcomes for treatment and the average
potential outcomes for control. Since we typically cannot observe both yi0 and yi1 for subject
i, what Holland (1986) calls The Fundamental Problem of Causal Inference, it is not possible
to measure the individual treatment effects. However, we can find an unbiased estimate of
ate from the difference in the sample averages of the treatment and control groups,

Y1 − Y0.

Implicit in this estimation is the assumption that each subject only has two potential out-
comes, and these outcomes depend on the assignment of the subject and are not influenced
by the assignment of other individuals. More formally we state this as our first assumption.

Assumption 1 (SUTVA). The causal effect of any individual does not depend on the as-
signment of other individuals. This is commonly known as the Stable Unit Treatment Value
Assumption (SUTVA) as first defined by Rubin (1974).

Without this assumption the potential outcomes of any subject could depend on the as-
signment of the other n − 1 subjects which leads to each individual having 2n potential
outcomes.

2.1.1 Compliance to Treatment Assignment and Compliance
Types

In experiments with human subjects, those assigned to receive treatment may or may not
comply with the treatment protocol. In this context, the ate may not be useful. If some

fraction of the subjects never accept treatment, the average response of the treated, 1
n

n∑
i=1

yi1

may not be a meaningful feature to estimate. Instead we may measure the impact of treat-
ment assignment on the outcome. To formalize this, and allow us to mirror the arguments of
Angrist et al. (1996), which present treatment effects in terms of probabilistic expectation,
we focus on the response of a randomly chosen member of the sample. Suppose one of the
n subjects is randomly selected such that each may be chosen with probability 1/n. Let
Y be their response and Z their treatment assignment. We are interested in the impact of
treatment assignment on outcome, commonly known as the intention-to-treat (itt) effect or

itt ≡ E(Y | Z = 1)− E(Y | Z = 0). (2.3)

We can evaluate both terms by conditioning on which subject is chosen so that

itt =
n∑

i=1

E(Y | Z = 1, subject i chosen) Pr(subject i chosen)

−
n∑

i=1

E(Y | Z = 0, subject i chosen) Pr(subject i chosen)
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=
1

n

n∑
i=1

E(Yi | Zi = 1, subject i chosen)− 1

n

n∑
i=1

E(Yi | Zi = 0, subject i chosen)

itt =
1

n

n∑
i=1

[E(Yi | Zi = 1)− E(Yi | Zi = 0) ] . (2.4)

Under perfect compliance E(Yi | Zi = 1) would equal yi1, and E(Yi | Zi = 0) would be
yi0. So itt would be identical to ate. With noncompliance, we focus on the individuals who
comply with treatment, and estimate the treatment effect for just those who are treated.
This is called the average treatment effect for the treated (att), also known as the local
average treatment effect or sometimes the complier average treatment effect. This insight
was reported by Sommer and Zeger (1991), before it was noted by Angrist and Imbens
(1994). Before we can understand itt and att in terms of the potential outcomes values, we
must incorporate the degree to which individuals comply with treatment assignment. For
simplicity, we contain ourselves to simple compliance of the two possible assignments where
an individual either receives the treatment or control protocol, with nothing in between (in
Section 4.2.3 we discuss an example with partial compliance where a subject may receive
only part of the intended treatment).

When considering compliance, the two possible compliance actions to two possible ex-
perimental group assignments yield 2× 2 = 4 distinct compliance types. An individual who
adheres to protocol and complies with the experimental regimen to which they were assigned
is a complier while one who always receives the opposite from what is assigned is known as
a defier. An alwaystaker always takes the treatment regardless of what is assigned while a
nevertaker never takes the treatment and only experiences the control condition. Just as
with the potential outcomes, behavioral traits are deterministic and specific to each indi-
vidual for the experiment being conducted. Since each individual is observed in only one of
the two possible treatments, we are not able to completely determine their compliance type.
For example, an individual assigned to treatment who receives treatment may be a complier
or an alwaystaker; we don’t know which.

More formally, for a sample of n subjects let Zi again be a random indicator of whether the
ith subject is assigned to treatment. The treatment received by subject i, di(z), is considered
a non-random trait of subject i which is an indicator function of whether they receive the
treatment protocol if assigned to z. Each subject i still has two potential outcomes, yi1 and
yi0, and yid is the response of subject i if they receive d. Thus, the response depends on the
treatment received di(Z), that is, the response is unrelated to assignment once the received
treatment is taken into account. The observed outcome is

Yi = yi1di(Zi) + yi0(1− di(Zi)). (2.5)

As in Equation 2.1, the only source of randomness in Equation 2.5 comes from the assignment
to treatment; Yi is a function of Zi. The treatment received and response of each of the four
compliance types is summarized in Table 2.1.



www.manaraa.com

9

Treatment

Compliance Treatment Received Response

Type Assigned di(Zi) Yi = yi1di(Zi) + yi0(1− di(Zi))

complier if Zi = 0 then di(0) = 0 and Yi = yi1(0) + yi0(1− 0) = yi0

complier if Zi = 1 then di(1) = 1 and Yi = yi1(1) + yi0(1− 1) = yi1

defier if Zi = 0 then di(0) = 1 and Yi = yi1(1) + yi0(1− 1) = yi1

defier if Zi = 1 then di(1) = 0 and Yi = yi1(0) + yi0(1− 0) = yi0

alwaystaker if Zi = 0 then di(0) = 1 and Yi = yi1(1) + yi0(1− 1) = yi1

alwaystaker if Zi = 1 then di(1) = 1 and Yi = yi1(1) + yi0(1− 1) = yi1

nevertaker if Zi = 0 then di(0) = 0 and Yi = yi1(0) + yi0(1− 0) = yi0

nevertaker if Zi = 1 then di(1) = 0 and Yi = yi1(0) + yi0(1− 0) = yi0

Table 2.1: Treatment received and response values as a function of treatment assigned for
each of the four compliance types.

We state our earlier comment, that once the treatment received is known the response
does not depend on the treatment assigned, as an explicit assumption.

Assumption 2 (Exclusion Restriction). The outcome only depends on the treatment re-
ceived, regardless of the treatment assigned. This is often referred to as the “exclusion
restriction”.

In most experimental settings, the researchers who administer the treatment have charge
over who receives it. Subjects in the control group, typically, cannot be treated. We assume
no crossover from control to treatment so that two of the compliance types are not possible.

Assumption 3. There are no defiers.

Assumption 4. There are no alwaystakers.

Of the four original compliance types only two are left: compliers and nevertakers.
Returning to our aim to localize the measurement of the treatment effect to those treated,

we might consider comparing the average response of just the treated to the untreated, or

E(Y | d(Z) = 1)− E(Y | d(Z) = 0).

This is problematic, however. As explained by Freedman, Pisani, and Purves (1998, p. 4),
using this estimate to represent the impact of treatment may overstate the effect as the values
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of the potential outcomes may be correlated with the treatment received. For example, in a
medical setting where doctors and patients have some understanding of how an individual
responds to a certain treatment, those who actually receive the treatment may be those for
whom the benefit is greatest while those in the control are the ones for whom the treatment
is riskier or less likely to have impact. Instead, we consider the average treatment effect
for the treated ( att), defined earlier as the average treatment effect over the compliers.
Returning to Y and Z referring to a subject chosen at random, let the event “complier”
occur when the chosen subject is a complier. We define att as

att ≡ E(Y | Z = 1, complier)− E(Y | Z = 0, complier). (2.6)

Since there isn’t perfect compliance of the subjects, we focus on the group for which
compliance is not an issue. The att provides an estimate of a treatment effect, albeit for a
subset of the population. We estimate att by connecting it to itt. Starting with Equation
2.3, we expand itt by conditioning on the two compliance types:

itt = E(Y | Z = 1)− E(Y | Z = 0)

= [E(Y | Z = 1, complier) Pr(complier) + E(Y | Z = 1, nevertaker) Pr(nevertaker) ]

− [E(Y | Z = 0, complier) Pr(complier) + E(Y | Z = 0, nevertaker) Pr(nevertaker) ]

= [E(Y | Z = 1, complier)− E(Y | Z = 0, complier) ] Pr(complier)

+ [E(Y | Z = 1, nevertaker)− E(Y | Z = 0, nevertaker)] Pr(nevertaker)

The second term on the right hand side is 0 because a nevertaker does not receive the
treatment so di(0) = di(1) = 0 and yi di(1) = yi di(0) = yi0. Thus E(Y | Z = 1, nevertaker) −
E(Y | Z = 0, nevertaker) = 0. This gives

itt = [E(Y | Z = 1, complier)− E(Y | Z = 0, complier) ] Pr(complier)

Dividing both sides by Pr(complier) yields

itt

Pr(complier)
= E(Y | Z = 1, complier)− E(Y | Z = 0, complier)

or, as defined by 2.6,

itt

Pr(complier)
= att. (2.7)

This representation provides an elegant and intuitive understanding of the relationship
between itt and att. It also brings out another assumption required to estimate att.
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Assumption 5. There are compliers among the n experimental subjects.

Assumption 5 is needed for att from Equation 2.7 to be defined. It also makes intuitive
sense; for there to be any hope of seeing an effect for the treated, some need to comply with
treatment.

2.2 In Experiments with Binary Responses

If the response, Yi, is binary, indicating whether the subject responds or not, the data
observed from the experiment can be summarized in a table such as the one below.

Assigned Assigned
Control Treatment

Received Received
Control Control Treatment

No response C0 T00 T01

Responds C1 T10 T11

Total c t

Table 2.2: Table of observations with binary responses.

The Cy in Table 2.2 is the total number of subjects assigned to the control with response
value y, and Tyd is the total assigned to treatment with response y and treatment received
d. The total assigned to each experimental condition are c and t with n = c + t. For now,
we assume c and t are fixed in advance of the experiment.

We may estimate the itt, the expected difference in the response rate of those assigned to
treatment minus the response rate of those assigned to control, with the observed difference

îtt =
T10 + T11

t
− C1

c
. (2.8)

In estimating att from Equation 2.7, the estimated fraction of compliers is simply the percent
of subjects in the treatment group who were treated:

âtt =


T10 + T11

t
− C1

c
T01 + T11

t

if T01 + T11 > 0

0 if T01 + T11 = 0,

(2.9)

If T01 + T11 = 0, that is, no observed compliers, we set âtt = 0 so the estimator has finite
expectation. This is different from Assumption 5, that there are some compliers among the
the entire group of subjects. Even if the assumption holds, our definition of âtt returns a
finite estimate in the (unlikely) event of all compliers assigned to the control.
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2.2.1 Response Types

Our initial presentation of att and itt in Section 2.1.1 was more general where the poten-
tial outcomes could take any real value. The restriction of only two possible outcomes, to
respond or not, leads to an elegant representation of the treatment effects. By Assumption
2, the response is determined by the treatment received, di(Zi), so we may characterize the
response behavior by whether one was treated or not. Since the received treatment and
response are binary there are 2× 2 = 4 response types.

always respond (AR) always responds whether treated or not

never respond (NR) never responds whether treated or not

treated respond (TR) if treated responds, if not treated doesn’t respond

not treated respond (NTR) if not treated responds, if treated doesn’t respond

Listing each separately highlights the plausibility of our final assumption.

Assumption 6 (Monotonicity). There are no“not treated respond”.

That is, there are no persons who respond if not treated but don’t respond if treated. We
think it reasonable to assume that if this portion of the population exists it is small enough
to be negligible. More generally, the monotonicity assumption applies when the assigned
experimental conditions form an ordered set, as do the possible outcomes. The assumption
states that for any two treatments s and t such that s ≤ t , then for every subject i in the
sample we have yis ≤ yit. With only two treatments and two responses such formal handling
may seem unnecessary, but it’s importance becomes clear in later chapters when we consider
experiments with multiple treatments.

Example 2.2.1. We note that the six assumptions hold for field experiments in get-out-
the-vote campaigns. Here, the treatment is outreach via face-to-face conversation, phone,
mail, email or social media. The response is vote or not. Voters who answer the door when
campaigners visit or pick up the phone are the ones who comply with treatment. Assumption
1, or the SUTVA, depends on no spillover effects between those in the treatment and control
groups and this is often adhered to by using subjects in separate households and assuming
that subjects do not come into contact with others in the experiment. If an individual is
not slated to be treated, then there is no avenue for them to receive the treatment (again if
no spillover) so Assumption 2, the exclusion restriction and Assumption 3, no defiers, seem
reasonable. Assumption 4, no alwaystakers should hold, as voters who the campaign does
not attempt to contact should have no way to receive the treatment. Assumption 5, that
compliers exist, is seen directly from the table of results. As discussed above, Assumption
6, monotonicity, seems plausible, that there are no individuals who vote if not treated but
who vote if treated (or at least if there are any “not treated respond” their numbers are
negligible).
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2.2.2 Combining Compliance Types and Response Types Leads
to Distinct Behavioral Types

Combining the two compliance types with the three response types gives three types of
compliers and three types of nevertakers:

complier-always-respond (comAR)

complier-never-respond (comNR)

complier-if-treated-respond (comTR)

nevertaker-always-respond (nevAR)

nevertaker-never-respond (nevNR)

nevertaker-if-treated-respond (nevTR)

The last is crossed out because nevertakers are not treated, and so a nevertaker-if-treated-
respond behaves just as a nevertaker-never-respond. Thus every individual in the experiment
can be classified as one of five different joint behavioral types corresponding with the five
different combined outcomes of (Zi, di(Zi), Yi) below.

comAR: if Zi=0 then (di(Zi), Yi) = (0, 1), if Zi=1 then (di(Zi), Yi) = (1, 1).

comNR: if Zi=0 then (di(Zi), Yi) = (0, 0), if Zi=1 then (di(Zi), Yi) = (1, 0).

comTR: if Zi=0 then (di(Zi), Yi) = (0, 0), if Zi=1 then (di(Zi), Yi) = (1, 1).

nevAR: if Zi=0 then (di(Zi), Yi) = (0, 1), if Zi=1 then (di(Zi), Yi) = (0, 1).

nevNR: if Zi=0 then (di(Zi), Yi) = (0, 0), if Zi=1 then (di(Zi), Yi) = (0, 0).

Of the five behavioral types, complier-if-treated-respond is the only one with response af-
fected by the treatment assignment. In the next section we show that estimating the itt is
equivalent to estimating the proportion of complier-if-treated-respond in the population; in
the Neyman-Rubin Causal framework, when outcomes are binary, we don’t estimate different
treatment effects for a population as much as we estimate the proportion of the population
for which the treatment has an effect. This is a key contrast between the behavioral-types
approach and the commonly applied linear modeling. Instead of a treatment effect as a
coefficient of a linear model, it is the frequency of some behavioral type. Under this ap-
proach, estimating treatment effects such as itt and att come directly from estimating the
distribution of the behavioral types.
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2.2.3 Behavioral Types and the Interpretation of Treatment
Effects

The link between the behavioral types and treatment effects of itt and att can be seen by
examining the table of observations. With the compliance and response to each treatment
assignment understood for each behavioral type, we can show where each appear in the
results. Table 2.3 shows the table of observations again, and just below it, which behav-
ioral types appear in each cell. Connecting the behavioral types to their location in the

Assignment Assignment
Control Treatment

Received Received
Control Control Treatment

No response C0 T00 T01

Responds C1 T10 T11

Total c t

Assignment Assignment
Control Treatment

Received Received
Control Control Treatment

No response nevNR comNR nevNR comNR
comTR

Responds nevAR comAR nevAR comAR
comTR

Table 2.3: Location of the five behavioral types in the table of observations.

table of observations reveals that C1 is simply the number of nevertaker-always-respond and
complier-always-respond assigned to control. And T10 is the number of nevertaker-always-
respond that appear in the treatment. Alternatively, from the perspective of parameter
estimation, we see that we can estimate the proportion of each behavioral type in the ex-
periment from the table of observations. Thus C1/c − T10/t estimates the proportion of
complier-always-respond. Since c and t are fixed, the table of observations has just four
degrees of freedom. We can estimate the fraction of each of the five behavioral types with

p̂nevNR =
T00

t
(2.10)
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p̂comNR =
T01

t
(2.11)

p̂nevAR =
T10

t
(2.12)

p̂comAR =
C1

c
− T10

t
(2.13)

p̂comTR =
T10 + T11

t
− C1

c
(2.14)

To demonstrate the connection between the proportion of behavioral types and the treatment
effects we begin with a bit of notation. Let ncomAR be the number of complier-always-
respond within the experiment and define the totals for the other behavioral types in the
same manner so that ncomAR + ... + nnevNR = n. Define pcomAR = ncomAR/n, etc. Then
p̂comAR is an unbiased estimator of pcomAR as are the other estimates of the proportion of
behavioral types. We connect the causal estimates with behavioral types by noting that the
estimands of Equations 2.8 and 2.14 have the same formula. That is,

îtt = p̂comTR.

The observed itt is just the estimated fraction of complier-if-treated-respond types. This
makes intuitive sense. The intention-to-treat effect is the difference in the response rate of the
treatment from that of the control. From Table 2.3 this difference is exactly the proportion
of complier-if-treated-respond types as they are the only behavioral type to change response
value based on treatment assignment. To confirm this, more formally, from Equation 2.3,

itt =
1

n

n∑
i=1

[E(Yi | Zi = 1)− E(Yi | Zi = 0) ] .

For complier-if-treated-respond, E(Yi | Zi = 1) − E(Yi | Zi = 0) equals 1 as they respond
only if assigned to treatment. For the other four behavioral types this difference is 0 so that

itt =
1

n
#(comTR)

=
ncomTR

n
= pcomTR.

It immediately follows from Equation 2.7 that

att =
itt

Pr(complier)

=
pcomTR

pcomAR + pcomNR + pcomTR

,
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while from Equation 2.9 we have

âtt =


p̂comTR

p̂comAR + p̂comNR + p̂comTR

if T01 + T11 > 0

0 if T01 + T11 = 0.

This insight, that the two causal effects of primary interest are simply proportions of the
population, helps clarify the underlying model when calculating the variance of âtt in the
next chapter, and also provides direction when we extend results to experiments with multi-
ple levels of treatment in the Chapters 4 and 5. The tactic of showing where each behavioral
type lands in the table of observations is useful to both estimate the proportion of each type
and to show their connection to the treatment effects. We reuse this approach a number
of times in subsequent chapters to identify the proportions of the behavioral types, which
parameterize the underlying data generating process.

2.3 An Alternative Parameterization Based on the

Observations

Our model to generate (C0, C1, T00, T01, T10, T11) is indexed by six parameters: c, t, pcomAR,
pcomNR, pcomTR and pnevAR. The proportion pnevAR is omitted because the five proportions
must sum to 1. To evaluate the variance of âtt we present an alternative parameterization
based on the observations. Define the proportions from the table of observations as q̂i = Ci/c
and p̂ij = Tij/t. We may rearrange Equations 2.10 to 2.14 to give:

p̂comAR = q̂1 − p̂10

p̂comNR = p̂01

p̂comTR = p̂10 + p̂11 − q̂1

p̂nevAR = p̂10.

These equations describe our estimates for the proportion of behavioral types in terms of the
proportions from the table of observations. Alternatively, we can represent the proportions
of observations as linear combinations of the behavioral types.

q̂1 = p̂comAR + p̂nevAR

p̂01 = p̂comNR

p̂10 = p̂nevAR
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p̂11 = p̂comAR + p̂comTR

Here p̂00 = p̂nevNR is redundant as the four p̂ij sum to 1. These equations demonstrate the
one-to-one relationship between (p̂comAR, p̂comNR, p̂comTR, p̂nevAR) and (q̂1, p̂01, p̂10, p̂11) and we
may choose to parameterize our model with either

(pcomAR, pcomNR, pcomTR, pnevAR) or (q1, p01, p10, p11).

Furthermore, under the parameterization p = (q1, p01, p10, p11), we can write att as a function
h() of p where

att = h(p) =
p10 + p11 − q1

p01 + p11
. (2.15)

which we estimate with

âtt =

h(p̂) =
p̂10 + p̂11 − q̂1

p̂01 + p̂11
if T01 + T11 > 0

0 if T01 + T11 = 0.

In the next chapter, when we examine the properties of âtt, we use parameterization from
this section.

2.4 Discussion

In this chapter we review the key concepts of the potential outcomes model focusing on the
experimental design with a control group and one treatment, where the subjects may or may
not receive the assigned treatment. In our setting, treatment assigned, treatment received
and responses are binary variables. We show that in such settings, subjects can be grouped
by their compliance and response behaviors to the assigned treatment. As a result, each
subject may be classified as one of a finite number of distinct types. We further show that
the assumptions typically made in the analysis of experimental data imply restrictions on
the number of types. These restrictions reduce the total number to five. The five remaining
behavioral types describe how an individual receives and responds to the different treatment
assignments.

We show that the formulas for the two causal effects of primary interest, the intention-
to-treat effect and the average treatment effect for the treated, can be written in terms of
the proportions the behavioral types among the experimental subjects. This is a noteworthy
shift in how causal effects are often interpreted. The causal effects we estimate do not
measure average treatment effects for a population as much as they reflect the proportion of
the population for which the treatment has an effect.

Furthermore, under the potential outcomes framework, the observed experimental data is
generated by a simple model which is completely parameterized by the unknown proportion
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of the five behavioral types in the experiment and the mechanism for assigning subjects
to treatment (along with known parameters such as the sample sizes of the control and
treatment groups). This understanding brings a new perspective, not just for the itt or att,
but for any inferential feature of the experiment, as it may be viewed as a function of the
proportion of these behavioral types. We return to this key point throughout the research.
This understanding of the data process, where observations are generated by randomly
allocating the five behavioral types to the treatment and control, directs how we evaluate
the bias and variance of âtt in the next chapter.

The work of Angrist et al. (1996) describing the average treatment effect for the treated
is a useful case study to introduce the concepts of behavioral types. It is a well-cited work
with which many readers may be familiar. More importantly, it states clear and explicit
assumptions which restrict possible values for the received treatment and response (such as
“no defiers” and the exclusion restriction). In Chapter 4 we show that such assumptions are
essential to reducing the number of behavioral types to a number which may be identified in
the data. In this study with a control and one level of treatment we reduced eight possible
types to five. As we show in Chapters 4 and 5, a behavioral-types approach is well suited for
analysis of multi-treatment experiments as it distills often complex designs into an estimation
problem of a manageable number of types.
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Chapter 3

Properties of the Average Treatment
Effect for the Treated Estimator with
Binary Responses

In most social science randomized controlled studies, the two experimental groups originate
from a finite pool of subjects and, conditioning on the study subjects, any variability in the
observed outcomes lies in the random assignment to treatment and control. That is, the
assignment to treatment is done at random without replacement and, unless there are further
assumptions, any inference about the treatment effects is only made within the experimental
sample. On the other hand, if the sample is thought to be drawn at random from an infinite
superpopulation, then the treatment and control groups are independent of one another, as
are the random counts Tij and Ci. This was the assumption made by Angrist and Imbens

(1994) though the variance for âtt for the finite case has been described elsewhere (for a
recent work see Sekhon and Shem-Tov, 2017). This distinction, between measurement of
a finite sample average treatment effect for the treated (satt) versus an infinite population
average treatment effect for the treated (patt) was made, generally speaking, as early as
Neyman (1923) and the impact of the sampling assumption on inference continues to be
studied as in Imbens and Rubin (2015, Ch 6) and Hartman, Grieve, Ramsahai, and Sekhon
(2015).

We examine the difference the two modeling assumptions have on the conclusions of the
experiment. While the sampling assumptions have no impact on the parameter identification
or the estimates of the treatment effects, they do impact the variance of the estimators. We
begin with the infinite population assumption and show how the asymptotic variance of âtt
may be found from the delta method. We then address the finite sample case. Next, we
conduct simulations to verify that for most sample sizes of interest, the actual variance of âtt
may be well approximated by it’s asymptotic limit. we compare the two sampling schemes
to show how the variance and standard error estimates for âtt hinge on the sampling as-
sumptions. However, for GOTV experiments, we show the sampling assumptions likely have
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little impact on the conclusions of most studies. Finally, we highlight a simpler approach to
estimating treatment effects that introduces a number of ideas, well aligned with behavioral
types, which are useful when we extend our results to RCTs with multiple treatments in
Chapter 4. While we include many of the calculations within the text, we place the proofs
in the final section of the chapter.

3.1 The Bias and Variance of âtt, when Observations

Originate from an Infinite Population

To evaluate the bias and variance of âtt we must first understand the properties of p̂. In this
section we begin by describing the underlying data generating process for the the observed
results under the infinite population assumptions. We then examine the bias and variance
of the parameter estimates, p̂. Finally we determine the bias and asymptotic variance of âtt.

Suppose an experiment has c control and t treatment subjects such that individuals
assigned to the two experimental conditions are drawn from an infinite population of possible
subjects. The table of observations, when tabulated by the assigned treatment, received
treatment and response is

Assigned Assigned
Control Treatment

Received Received
Control Control Treatment

No response C0 T00 T01

Responds C1 T10 T11

Total c t

where Cy is the total number of subjects assigned to the control with response value y and
Tyd is the total assigned to control with response y and treatment received d. The total
assigned to each treatment condition are c and t with c + t = n. Under these sampling
assumptions, C1 follows a binomial(c, q1) distribution where q1 equals the fraction who re-
spond if assigned to the control group (that is, the proportion of complier-always-respond and
nevertaker-always-respond in the population). Similarly the distribution of (T01, T01, T10, T11)
is multinomial(t, p00, p01, p10, p11), independent of (C0, C1), where

p00 is the infinite population proportion of nevertaker-never-respond, or pnevNR,
p01 is the infinite population proportion of complier-never-respond, or pcomNR,
p10 is the infinite population proportion of nevertaker-always-respond, or pnevAR,
p11 is the infinite population proportion of compliers who either always respond or
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respond if treated, or pcomAR and pcomTR.

Since p00 + p01 + p10 + p11 = 1 we only concern ourselves with p01, p10 and p11. We use this
parameterization, p = (q1, p01, p10, p11), corresponding with the table of observed results as
in described Section 2.3, for the remainder of this chapter.

Again, we calculate the expected value and variance of p̂ under the infinite population
assumptions before examining the properties âtt. However, from the expectation properties
of the binomial and multinomial distributions, we see that p̂ = (q̂1, p̂01, p̂10, p̂11) is unbiased.
That is, under the infinite population assumption, which we denote with pop,

Epop(p̂) = p = (q1, p01, p10, p11).

And we evaluate the variance of p̂ in the next section.

3.1.1 Variance of p̂ under the Infinite Population Assumption

Under the infinite sampling model,

Varpop(p̂) = Varpop(q̂1, p̂01, p̂10, p̂11)

= Varpop

(
C1

c
,
T01

t
,
T10

t
,
T11

t

)
.

Since C1 is binomial(c, q1) and independent of (T01, T01, T10, T11), which is multinomial(t, p00, p01, p10, p11),
the covariance matrix of p̂ is readily available from the properties of the binomial and multi-
nomial distributions.

Varpop(p̂) =



q1(1−q1)
c

0 0 0

0 p01(1−p01)
t

−p01p10
t

−p01p11
t

0 −p01p10
t

p10(1−p10)
t

−p10p11
t

0 −p01p11
t

−p10p11
t

p11(1−p11)
t



The zeros derive from the independence of Ci and Tij and thus the independence of q̂1 and
p̂ij. If we denote the fraction of the subjects assigned to treatment as β ≡ t/n, then

Varpop(p̂) =
1

n


1

β


β

(1−β)
q1(1−q1) 0 0 0

0 p01(1− p01) −p01p10 −p01p11

0 −p01p10 p10(1− p10) −p10p11

0 −p01p11 −p10p11 p11(1− p11)




(3.1)
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.
=

1

n
Σpop (3.2)

where Σpop is the matrix within the curly braces of Equation 3.1. With the mean and

covariance of p̂ spelled out, we proceed to evaluating the bias and variance of âtt.

3.1.2 Bias of âtt under the Infinite Population Assumption

Unlike p̂, the estimate âtt is biased. To describe the limiting behavior of the bias we imagine
an infinite sequence of experiments indexed by the total number of subjects, n, where the
fraction assigned to treatment is approximately equal as n increases. We assume response
values are binary to give the table of observations, (C0, C1, T01, T01, T10, T11), and suppose
Assumptions 1 - 6 of Chapter 2, which lead to the five distinct behavioral types and allow
us to identify att.

Proposition 3.1.1. Suppose:

i The total assigned to treatment, t(n) is such that t(n)/n → β and the total assigned to
control is c(n) = n− t(n).

ii Assume infinite population sampling, that is, C1 is binomial(c(n), q1) and (T01, T01, T10, T11)
is multinomial(t(n), p00, p01, p10, p11).

iii The average treatment effect for the treated is defined as

att = h(p) =
p10 + p11 − q1

p01 + p11
,

which is estimated by

âtt =


h(p̂) =

T10 + T11

t(n)
− C1

c(n)
T01 + T11

t(n)

if T01 + T11 > 0

0 if T01 + T11 = 0.

Then the order of the bias is 1/n, or

Epop(âtt) = att+O( 1
n
).

Note: though not stated explicitly, each random quantity above, such as âtt, C1, etc., is
indexed by n. We remove the index for ease of notation.

We leave the proof to the end of the chapter.
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3.1.3 Variance of âtt under the Infinite Population Assumption

Evaluating the variance of âtt directly is challenging, as it is a ratio of dependent random
variables. Instead we may approximate the variance via the delta method (see Bishop,
Fienberg, and Holland, 1975, p. 493). From equation 2.15 we may write att as a multivariate
function, h() of p, that is,

att = h(p) =
p10 + p11 − q1

p01 + p11

To find the asymptotic variance we apply the delta method for convergence in distribution
and obtain the following result.

Proposition 3.1.2. Suppose the assumptions of Proposition 3.1.1 then

√
n(âtt− att)

d→ N(0,∇h(p)′Σpop∇h(p)).

We postpone the proof to section 3.8. Under the infinite population assumption, Proposition
3.1.2 gives the asymptotic variance of âtt but doesn’t inform how applicable the variance
approximation will be for fixed n. In Section 3.3 we show that for large samples, or at least
for the sample sizes of many published social science experiments, they asymptotic variance
is a useful approximation to the actual variance, that is,

Varpop(âtt) ≈ ∇h(p)′
1

n
Σpop∇h(p). (3.3)

3.2 The Bias and Variance of âtt, when Observations

Originate from a Finite Sample

In the same manner of Section 3.1, we evaluate the bias and variance of p̂ and then turn
to the properties of âtt. First, we describe the data generating process for the table of
observations, (C0, C1, T00, T01, T10, T11).

Under the finite sample assumption, the Ci and Tij result from how the five behavioral
types are randomly split between the treatment and control. In this setting, the number of
each behavioral type found in each experimental condition follows a multivariate hypergeo-
metric distribution (see Johnson, Kotz, and Balakrishnan, p. 171). This is an extension of
the more common hypergeometric distribution, often described as imagining an urn with n
objects of which n1 are red, n2 are green, n1 + n2 = n, and objects are indistinguishable
except for color. When drawing t times without replacement from the urn, the number of
objects drawn of a certain color is described by a distribution depending on n1, n2 and t. In
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the multivariate hypergeometric distribution, the description is similar but there are three
or more different colors for the objects.

In our experiment, with binary outcomes and possible noncompliance of treatment, there
are n total subjects and five different behavioral types. Each behavioral type is analogous
to a different color. We set ntype i as the number of type i individuals in the finite sample.
We have

n = ncomAR + ncomNR + ncomTR + nnevAR + nnevNR.

Of these, t individuals are chosen without replacement and assigned to the treatment group
while c = n−t remain in control. Let TcomAR be the random variable representing the number
of complier-always-respond who are assigned to treatment so CcomAR = ncomAR − TcomAR.
Then TcomAR and the four other Ttype i each follow a multivariate hypergeometric distribution
where, if samp indicates finite sampling,

Esamp(Ttype i) = t
ntype i

n
,

Varsamp(Ttype i) =
t c ntype i(n− ntype i)

n2(n− 1)
, and

Covsamp(Ttype i, Ttype j) = −t c ntype i ntype j

n2(n− 1)
for i ̸= j.

For the Ctype i representing the number in the control group, since Ctype i = ntype i −Ttype i we
can calculate the expectation and covariance in terms of Ttype i so that

Esamp(Ctype i) = c
ntype i

n
,

Varsamp(Ctype i) = Varsamp(Ttype i) =
t c ntype i(n− ntype i)

n2(n− 1)
, and

Covsamp(Ctype i, Ctype j) = Covsamp(Ttype i, Ttype j) = −t c ntype i ntype j

n2(n− 1)
for i ̸= j.

Furthermore, Ttype i and Ctype j have covariance

Covsamp(Ttype i, Ctype i) = −Varsamp(Ttype i) = −t c ntype i(n− ntype i)

n2(n− 1)
, and (3.4)

Covsamp(Ttype i, Ctype j) = −Covsamp(Ttype i, Ttype j) =
t c ntype i ntype j

n2(n− 1)
for i ̸= j. (3.5)

From the table of observations, as seen in Table 2.3, we are not able to identify the Ttype i

and Ctype j for each behavioral type. However, along the lines of the reparameterization in
Section 2.3, Tij and Ci may be written as the combinations of Ttype i and Ctype j as follows.

C0 = CnevNR + CcomNR + CcomTR (3.6)

C1 = CnevAR + CcomAR (3.7)
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T00 = TnevNR (3.8)

T01 = TcomNR (3.9)

T10 = TnevAR (3.10)

T11 = TcomAR + TcomTR (3.11)

With the connection between the table of observations and the behavioral types in each cell
delineated, we can solve for the expectations and covariance structure among Ci and Tij.

Thus, under the finite sample assumptions, the model is parameterized by nnevNR, nnevAR,
ncomNR, nnevAR, ncomTR and t. We write

pnevNR(n) =
nnevNR

n
, pnevNR(n) =

nnevNR

n
,

and so forth, as the proportion for the behavioral types. Here, in contrast to the infinite
sampling model, each proportion is a multiple of 1/n and is not fixed as n increases. This
distinction becomes important when we explore the limiting behavior of the finite sample
model as n → ∞. However, for ease of notation, we drop the index by n, and write pnevNR

for pnevNR(n), etc. for the remainder of the section, and then address the issue more formally
when we discuss the asymptotic distribution of âtt in Propositions 3.2.1 and 3.2.2. With
these proportions we may parameterize the model with pnevAR, pcomNR, pnevAR, pcomTR, c
and t. For convenience, we choose the proportion parameterization of p = (q1, p01, p10, p11)
from Section 2.3, which is estimated by p̂ = (q̂1, p̂01, p̂10, p̂11).

Using Equations 3.6 - 3.11 we may evaluate the bias and variance of p̂. Since each
Ctype i/c and Ttype i/t are unbiased estimators for ptype i , p̂ = (q̂1, p̂01, p̂10, p̂11) is an unbiased
estimator for p = (q1, p01, p10, p11). We determine the variance of p̂ in the next section.

3.2.1 Variance of p̂ under the Finite Population Assumption

The relationships in Equations 3.6 to 3.11 are useful for calculating the covariances among
p̂ij and q̂i. Here, the parameters pij and qi come from the proportions of behavioral types
in the sample and are multiples of 1/n. The expectations of p̂10 and p̂11 are p10 = nnevAR/n
and p11 = (ncomAR + ncomTR)/n, and the two have covariance

Covsamp(p̂10 , p̂11) =
1

t2
Covsamp(T10 , T11)

=
1

t2
Covsamp(TnevAR, TcomAR + TcomTR)

=
1

t2
[Covsamp(TnevAR, TcomAR) + Covsamp(TnevAR, TcomTR)]

=
1

t2

[
−t c nnevAR ncomAR

n2(n− 1)
) +−t c nnevAR ncomTR

n2(n− 1)

]
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= − c nnevAR

tn2(n− 1)
[ncomAR + ncomTR]

= − c

t(n− 1)

[nnevAR

n

] [ncomAR + ncomTR

n

]

= − c

t(n− 1)
p10p11 .

This amount equals the covariance if sampling from an infinite population multiplied by a
factor of c

n−1
. This also holds for the covariance among the other p̂ij while the covariance

between q̂i and p̂ij may be solved using Equations 3.4 and 3.5. The resulting covariance
matrix of p̂ = (q̂1, p̂01, p̂10, p̂11), under finite sampling assumptions is

Varsamp(p̂) =



tq1(1−q1)
c(n−1)

q1p01
n−1

−p10(1−q1)
n−1

p10−q1(1−p11)
n−1

q1p01
n−1

c p01(1−p01)
t(n−1)

−c p01p10
t(n−1)

−c p01p11
t(n−1)

−p10(1−q1)
n−1

−c p01p10
t(n−1)

c p10(1−p10)
t(n−1)

−c p10p11
t(n−1)

p10−q1(1−p11)
n−1

−c p01p11
t(n−1)

−c p10p11
t(n−1)

c p11(1−p11)
t(n−1)



=
1

n− 1



tq1(1−q1)
c

q1p01 −p10(1− q1) p10 − q1(1− p11)

q1p01
c p01(1−p01)

t
−c p01p10

t
−c p01p11

t

−p10(1− q1)
−c p01p10

t
c p10(1−p10)

t
−c p10p11

t

p10 − q1(1− p11)
−c p01p11

t
−c p10p11

t
c p11(1−p11)

t


. (3.12)

As before with β = t/n and 1− β = c/n this becomes

Varsamp(p̂) =
1

n− 1



βq1(1−q1)
(1−β)

q1p01 −p10(1−q1) p10−q1(1−p11)

q1p01
(1−β)p01(1−p01)

β
−(1−β)p01p10

β
−(1−β)p01p11

β

−p10(1−q1)
−(1−β)p01p10

β
(1−β)p10(1−p10)

β
−(1−β)p10p11

β

p10−q1(1−p11)
−(1−β)p01p11

β
−(1−β)p10p11

β
(1−β)p11(1−p11)

β
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= 1
n−1

(1−β)
β



β2q1(1−q1)
(1−β)2

βq1p01
1−β

−βp10−q1(1−p11)
1−β

β(p10−q1(1−p11))
1−β

βq1p01
1−β

p01(1−p01) −p01p10 −p01p11

−βp10(1−q1)
1−β

−p01p10 p10(1−p10) −p10p11

β(p10−q1(1−p11))
1−β

−p01p11 −p10p11 p11(1−p11)



= 1
n


n

n−1
(1−β)

β



β2q1(1−q1)
(1−β)2

βq1p01
1−β

−βp10(1−q1)
1−β

β(p10−q1(1−p11))
1−β

βq1p01
1−β

p01(1−p01) −p01p10 −p01p11

−βp10(1−q1)
1−β

−p01p10 p10(1−p10) −p10p11

β(p10−q1(1−p11))
1−β

−p01p11 −p10p11 p11(1−p11)




(3.13)

.
=

1

n
Σsamp, (3.14)

whereΣsamp denotes the matrix within the curly braces of Equation 3.13. Notice that except
for the first row and column, the other nine entries of the matrix equal of Σpop multiplied
by a factor of n

n−1
(1− β). We further explore this connection in Section 3.4.

3.2.2 Bias of âtt under the Finite Population Assumption

Similar to the findings of Proposition 3.1.1, the estimate âtt is biased. Again, we assume
response values are binary to give the table of observations (C0, C1, T00, T01, T10, T11), and
suppose Assumptions 1 - 6 of Chapter 2, which lead to the five distinct behavioral types and
allow us to identify att. As discussed at the beginning of Section 3.2, in the finite setting,
the parameters are not fixed as they must be multiples of 1/n. This requires additional
specifications on the parameters, p(n), which must be indexed by n.

Proposition 3.2.1. Suppose:

i The total assigned to treatment, t(n) is such that t(n)/n → β and the total assigned to
control is c(n) = n− t(n).

ii Assume finite population sampling as described in Section 3.2. That is, the five different
behavioral types are randomly allocated without replacement. This results in the counts
(C0, C1, T00, T01, T10, T11) found via the relationships in Equations 3.6 - 3.11.
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iii The proportion parameters for each finite n, p(n) = (q1(n), p01(n), p10(n), p11(n)), con-
verge to the limiting vector p∞ = (q∞1 , p∞01, p

∞
10, p

∞
11) as follows:

q1(n) = q∞1 +O(1/n)

p01(n) = p∞01 +O(1/n)

p10(n) = p∞10 +O(1/n)

p11(n)) = p∞11 +O(1/n)

iv The average treatment effect for the treated is defined as

att(n) = h(p(n)) =
p10(n) + p11(n)− q1(n)

p01(n) + p11(n)
,

which is estimated by

âtt =


h(p̂) =

T10 + T11

t(n)
− C1

c(n)
T01 + T11

t(n)

if T01 + T11 > 0

0 if T01 + T11 = 0.

Then the order of the bias is 1/n, or

Esamp(âtt) = att(n) +O( 1
n
).

Again we postpone the proof to the end of the chapter. The bias from Propositions 3.1.1 and
3.2.1 are of the same order though the underlying distributions, and the methods needed to
prove the results differ.

3.2.3 Variance of âtt under the Finite Population Assumption

The challenges described in Section 3.1.3 to directly evaluate the variance of âtt still apply
in the finite sample case. Furthermore, the proof of Proposition 3.1.2, which establishes the
asymptotic normality of âtt under infinite sampling, required that p̂ converge to a normal
distribution. That condition does not hold, in general, for finite sampling. However, in a
recent work, Li and Ding (2017) show that many treatment effect estimates, under finite
sampling, are asymptotically normal. We use their findings, which we describe in the final
section of this chapter, to show this holds for âtt as well.

Proposition 3.2.2. Suppose the assumptions of Proposition 3.2.1 then

√
n(âtt− att)

d→ N(0,∇h(p)′Σsamp∇h(p)).
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Proposition 3.2.2 gives the limiting variance of âtt under the finite population assumption.
For large n, as we show in the next section, we have

Varsamp(âtt) ≈ ∇h(p)′
1

n
Σsamp∇h(p). (3.15)

3.3 Accuracy of Variance Approximations to âtt

The asymptotic variances of Propositions 3.1.2 and 3.2.2 may not be adequate for many
social science field experiments with sample sizes in the thousands. To find how large of a
sample is needed to be be able to use the approximation we carry out a simulation study. We
choose a large number of representative points of the parameter space and simulate âtt, using
both sampling assumptions, to obtain their variance and compare to the approximations.

First we create an evenly spaced grid to span the possible parameter space by returning
to our original parameterization of pcomAR, pcomNR, pcomTR, pnevAR and β (β = t/n, the
fraction assigned to treatment). With five dimensions the total points of the grid may grow
prohibitively large. To reduce this, we take advantage of constraints to limit the parameter
space. Each of the five values are between 0 and 1 and satisfy

0 ≤ pcomTR + pcomAR + pcomNR + pnevAR ≤ 1

We also restrict the parameters to ranges usually found in social science experiments so that
the grid is computed as follows:

• 0 ≤ pcomTR ≤ .20 by increments of .001,

• .01 ≤ pcomAR ≤ .70 by increments of .01,

• .01 ≤ pcomNR ≤ .70 by increments of .01,

• .01 ≤ pnevAR ≤ .80 by increments of .01,

• .05 ≤ β ≤ .90 by increments of .05,

where pcomTR is examined more closely as it is the main behavioral type of interest. Addi-
tionally we restrict the total fraction of compliers by

pcomTR + pcomAR + pcomNR ≤ .95,

as our concern is with experiments with noncompliance. In total, this yields a grid of over
400 million points. For each of these points we vary n by two possible sample sizes: 1,000
and 10,000. We shall refer to this grid again in Section 3.4

To make our analysis more manageable we randomly select 100,000 of the 400 million
points of the parameter grid. Under the infinite population assumptions, for each parameter



www.manaraa.com

30

point we obtain the “true” value of the variance by simulating the experiment one hundred
thousand times, and obtaining one hundred thousand observed values for âtt. We use these
to compute the standard deviation at the point. This is compared to the approximate
standard deviation using the asymptotic amount from Proposition 3.1.2.

Figure 3.1 shows a histogram of the difference between the approximation and the true
value found from simulation. In (a), where n is 1,000, the histogram has a mode at zero with
a left tail. While the approximation of SDpop(âtt) tends to be within a few percentage points
of the true value, for some parameter points it may understate the SD by 5–10%. In (b),
where the parameter values are the same but n is increased 10,000, the histogram is centered
around zero the approximations are largely within 1% of the true value. Though difficult to
see in (b) there are a handful of points where the the approximation is smaller by more than
5%. This occurs when β is 0.05, that is this is smallest treatment group on the grid and the
fraction of compliers is very small, less than 6%. These extreme parameter points are rarely
encountered in social science field experiments and the approximation seems adequate for
sample sizes of more than 10,000.

(a) Sample size of 1,000 (b) Sample size of 10,000

Figure 3.1: Difference between the approximation of SDpop(âtt) and the value found via
simulation when the sample size is 1,000 or 10,000. Each value of the histogram represents
a different point of the parameter space. 100,000 of the the over 400 million points of the
parameter grid have been randomly selected for the plot.

In Figure 3.2 we see nearly identical histograms for the finite sample case and we draw
the same conclusions: using the asymptotic variance to approximate the standard deviation
is well-suited to sample sizes of more than 10,000 and may be a good approximation at
samples sizes of 1,000.
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(a) Sample size of 1,000 (b) Sample size of 10,000

Figure 3.2: Difference between the approximation of SDsamp(âtt) and the value found via
simulation when the sample size is 1,000 or 10,000. Each value of the histogram represents
a different point of the parameter space.

3.4 Comparing the Asymptotic Variances of the

Infinite Population and Finite Sample

Assumptions

To understand the connection between the asymptotic variances of âtt under the infinite
and finite sampling, we must first understand the connection between the variance matrices
for p̂ under the different assumptions. For ease of notation, we shall refer to the asymptotic
variances as Varpop(âtt) and Varsamp(âtt) as found in Propositions 3.1.2 and 3.2.2, though we

recognize for any finite sample this will not represent the true variance of âtt. To characterize
the relationship between the two, starting with Equation 3.13,

Σsamp = n
n−1

(1−β)
β



β2q1(1−q1)
(1−β)2

βq1p01
1−β

−βp10(1−q1)
1−β

β(p10−q1(1−p11))
1−β

βq1p01
1−β

p01(1−p01) −p01p10 −p01p11

−βp10(1−q1)
1−β

−p01p10 p10(1−p10) −p10p11

β(p10−q1(1−p11))
1−β

−p01p11 −p10p11 p11(1−p11)
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Σsamp = n
n−1

(1−β)
β


βΣpop +



β2q1(1−q1)
(1−β)2

− βq1(1−q1)
(1−β)

βq1p01
1−β

−βp10(1−q1)
1−β

β(p10−q1(1−p11))
1−β

βq1p01
1−β

0 0 0

−βp10(1−q1)
1−β

0 0 0

β(p10−q1(1−p11))
1−β

0 0 0




bringing (1−β)

β
into the brackets gives

= n
n−1

(1− β)Σpop +


βq1(1−q1)
(1−β)

− q1(1−q1)
1

q1p01 −p10(1−q1) p10−q1(1−p11)

q1p01 0 0 0

−p10(1−q1) 0 0 0

p10−q1(1−p11) 0 0 0


 .

The (1, 1) entry of the right matrix is simplified to

Σsamp = n
n−1

(1− β)Σpop +


(2β−1)
(1−β)

q1(1−q1) q1p01 −p10(1−q1) p10−q1(1−p11)

q1p01 0 0 0

−p10(1−q1) 0 0 0

p10−q1(1−p11) 0 0 0


 .

And if we denote the right matrix to Σgap, as it represents the “gap” between Σsamp and
(1− β)Σpop, we have

Σsamp =
n

n− 1
{(1− β)Σpop +Σgap}

Σsamp = (1− β)Σpop +Σgap +
1

n− 1
{(1− β)Σpop +Σgap} . (3.16)

This is the key relation which links the âtt variances under the two assumptions. We com-
pare the asymptotic variances by substituting 3.16 into the formula for Varsamp(âtt) from
Proposition 3.2.2.

Varsamp(âtt) = ∇h(p)′
1

n
Σsamp∇h(p)
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= ∇h(p)′
1

n

[
(1− β)Σpop +Σgap +

1

n− 1
{(1− β)Σpop +Σgap}

]
∇h(p)

=
1

n
∇h(p)′ (1− β)Σpop ∇h(p) +

1

n
∇h(p)′ Σgap ∇h(p)

+
1

n(n− 1)
∇h(p)′ {(1− β)Σpop +Σgap} ∇h(p)

= (1− β)Varpop(âtt) +
1

n
∇h(p)′ Σgap ∇h(p) + O( 1

n(n−1)
)

Varsamp(âtt) = (1− β)Varpop(âtt) +
1

n
∇h(p)′ Σgap ∇h(p) +O(n−2) (3.17)

Equation 3.17 shows that Varsamp(âtt) can be split into three parts. The first term is a

fraction of Varpop(âtt) which decreases as β, which is similar to a finite population correction
factor, increases. The second term is based on Σgap which is determined by the covariance
between the observations in the control with the observations in the treatment. An inspection
of ∇h(p) and Σgap shows that, for values of β greater than 0.5, as β increases the second
term is positive and tend to larger numbers, perhaps offsetting the decrease in size of the
first term. The third term becomes less important as n increases in size but may have some
degree of impact if n is small.

This is a familiar form which we see in the much simpler comparison of treatment and
control means seen in introductory statistics courses. For example, Freedman et al. (1998,
p. 512) recommend that for randomized trials one may compute the variance of the difference
in means test statistic as if the treatment and control groups were selected independently.
They argue that if the variance is computed properly, accounting for the dependency between
the groups, the finite population correction factor reduces the variance but the negative
correlation between the means increases it. They conclude that practitioners should use
the infinite population assumptions as the adjustments for the finite population cancel each
other. We would like to know if the same argument holds for Var(âtt) for the two sampling
schemes.

From Equation 3.17, even if we ignore the third term, it’s not clear which of the as-
sumptions lead to a smaller variance. This is addressed in the following proposition and
corollary.

Proposition 3.4.1. The difference in the asymptotic variances of âtt under infinite and
finite sampling has the following form.

∇h(p)′ 1
n
Σpop ∇h(p)−∇h(p)′ 1

n
Σsamp ∇h(p) =

pcomTR(pcomAR + pcomNR)

n(pcomAR + pcomNR + pcomTR)3

− 1
n(n−1)

∇h(p)′ {(1− β)Σpop +Σgap}∇h(p)
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Since the second term of the right hand side is O(n−2), we have the following corollary
which more directly relates to the variances.

Corollary 3.4.2.

Varpop(âtt)− Varsamp(âtt) ≈
pcomTR(pcomAR + pcomNR)

n(pcomAR + pcomNR + pcomTR)3

Corollary 3.4.2 is notable for a number of reasons. First, the parameters β and pnevAR

do not appear; only the proportions of the three complier types matter. Second, as the
proportion of complier-always-respond and complier-never-respond are interchangeable in
the equation we may write the ratio as

Pr(comTR | complier)[ 1− Pr(comTR | complier) ]

nPr(complier)
.

The form of this equation, for the difference in the variances under the finite and infinite
population models, is quite similar to one found by Imbens and Rubin (2015, p. 440) for
general estimators of average causal effects, though their example does not address noncom-
pliance. The denominator indicates the difference between the variance is largest when the
fraction of compliers is small and while the denominator shows the difference is maximized
when comTR make up half of all compliers. On the contrary, the difference between the
variances is minimized with more compliers and when the comTR either make up a very
large, or very small portion of the compliers. Finally, Corollary 3.4.2 shows that for large
enough n, we have

Varpop(âtt) ≥ Varsamp(âtt),

as the difference between them is positive. This still does not answer the primary question
of whether the choice of sampling assumption impacts the conclusions of the experiment.
For instance, the formulas approximating the variances indicate Varpop(âtt) and Varsamp(âtt)
also increases as the fraction of compliers decrease. Whether this increase is large enough
that the difference between the variances is meaningful is addressed in the next section.

3.5 The Impact of the Sampling Assumptions on the

Conclusions about âtt

In Section 3.3 we show the asymptotic variance for âtt well-approximates the actual variance
and in Section 3.4 we calculate how the variance differs between finite and infinite sampling.
While the finite sample assumptions lead to a smaller variance, in practice this only matters
if the difference in the calculated standard error leads to a noticeable difference in the
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significance of âtt. In this section we explore the degree to which the sampling assumption
choice leads to different conclusions for hypothesis tests about the existence of att.

To address this question we return to the “parameter grid” described in Section 3.3.
The grid allows us to evaluate the standard deviation of âtt over an adequately dense rep-
resentation, consisting of over 400 million points, of the parameter space of interest. To
investigate the significance for âtt we take two further steps. First, we transform the grid so
the parameters correspond with the percentages observed in the table of observed results,
that is, the parameters are p = (q1, p01, p10, p11) and β) (the fraction assigned to treatment).
Second, instead of viewing the points on the grid as the model parameters, we imagine them
representing observed data, p̂ = (q̂1, p̂01, p̂10, p̂11) and β). Every point of the grid represents
a possible observed contingency table and, taken over the entire grid, we have an adequate
representation of the space of all observed results. For each point of the grid we may then
calculate a standard error and p-value for âtt under each of the two sampling assumptions,
and compare the p-values to reveal at which points they differ.

We begin by comparing the standard errors (SE) for âtt under the two assumptions,
calculating the ratio

SEsamp(âtt) / SEpop(âtt),

for each point of the grid. Figure 3.3 shows a histogram of these ratios, where we have
selected five percent of the total points (to make the plotting feasible). We see the ratio is
primarily between 0.9 and 1, though there is a portion where the ratio is between 0.85 and
0.9. This is a difference which could, for example, lead to a noticeably different p-value for
a null hypothesis of att equaling zero.

However, despite the difference in the standard error for the two assumptions, the p-
values calculated for each point of the grid are quite similar. Figure 3.4(a) shows a scatter
plot of the p-values under the two sampling assumption, indicating that most points lie along
the identity line. Figure 3.4(b) shows the same plot, magnified to focus on p-values of less
than 0.1. Even when the standard errors differ, it makes little difference for the p-values.
Further analysis reveals that the points for which the standard errors are most different, for
the two sampling assumptions, correspond with observed values which are highly significant.
For example, the choice of the sampling scheme may lead to a p-values of 0.01 versus a
p-values of 0.005.

In summary, the sampling assumptions do make a difference on the standard error but
the difference seems to mostly impact observed values with highly significant p-values. These
p-values are so significant that the choice of the modeling assumption matters little for the
overall conclusions. While we kept n fixed at 100,000, for the figures shown, similar findings
held with samples of size 1,000 and 10,000.
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Figure 3.3: Histogram of the ratio of SEsamp(âtt) / SEpop(âtt) for the differing parameter
values of (q̂1, p̂01, p̂10, p̂11, β). Five percent of the over 400 million points of the grid have
been randomly selected for this plot.

Impact of Sampling Assumptions on GOTV Field Experiments

While the previous section highlights the regions of the parameter space where SEpop(âtt)

and SEsamp(âtt) differ, for much of the space there is little practical difference between the
two. To see if the different assumptions lead to different conclusions, in GOTV studies, we
examined a recent survey of the literature from Green and Gerber (2015). In their Chapter
6, they summarize findings of door-to-door canvassing experiments, citing 22 reports which
cover 24 separate field experiments with designs where we may measure âtt (some articles
contain multiple experiments that meet our criteria, some articles have none). From the
journal articles and from GOTV micro-data stored at Yale University’s Institution for Social
and Policy Studies, we were able to obtain the values of (C0, C1, T01, T01, T10, T11) of 11
experiments, as shown in Table 3.1. We show the standard error under both infinite and
finite cases and the p-value from testing the null hypothesis of att equaling zero.

Except for the Bridgeport experiment by Green et al., the underlying sampling assumptions
have little impact on the overall significance of the estimate. For the range of results found
in these experiments, the standard errors are nearly equal, with the SEs calculated under
the finite sampling assumption slightly below the SEs calculated for the infinite case. The
Bridgeport experiment has the largest gap between the SEs as the finite case SE is smaller
by 4.3%. However, this only changes the p-value from 0.010 to 0.007. The Bridgeport exper-
iment also yields the most significant p-value. This confirms our findings from the previous
section; the SEs do differ under the two sampling assumptions but this occurs when the
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(a) All points. (b) Focusing on p-values of less than 0.1

Figure 3.4: Scatter plot of p-values computed for att under infinite sampling versus p-values
for att under finite sampling. Ten percent of the the over 400 million points of the grid have
been randomly selected for this plot.

findings are already quite strong.

3.6 Estimating Attributable Effects

The landmark paper by Gerber and Green (2000) became a source of controversy when Imai
(2005) brought to light troubles with the randomization of treatment assignment for some
of the voters in the study. A series of published exchanges led to a spirited dialogue about
the strength of the conclusions of the original work. Bowers and Hansen (2005) entered
the discussion with suggestions on how the assignment, though imperfect, could still be
incorporated into the modeling. Though their main focus was on recovering estimates of
treatment effects when controlling for certain covariates, their paper provides a useful and
thorough review of the Neyman-Rubin Causal Model when applied to settings with binary
outcomes. In doing so, they find a confidence interval, for a treatment effect, that does
not depend on assuming the large sample sizes required to apply the delta method. By
recognizing the outcome (respond or not) as a direct function of treatment assignment a
much simpler analysis can be derived.

Their insights were largely the inspiration for this work and they also make a reference
to “types” in the same vein as our behavioral types. We take a moment to review their
initial analysis. To distinguish this from the approach of Angrist et al. (1996), we express
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Publication, Location SE SE p-value p-value

and/or Treatment n âtt pop samp pop samp
Michelson (2003)
Dos Palos, Civic Duty 1,903 4.38% 2.57% 2.52% .088 .081
Dos Palos, Ethnic Solidarity 1,909 3.81% 2.54% 2.49% .134 .126

Gerber and Green (2000)
New Haven, Civic Duty 25,571 9.05% 4.30% 4.29% .035 .035
New Haven, Neighbor Solidarity 25,467 5.11% 4.09% 4.08% .212 .210
New Haven, Election is Close 25,514 12.12% 4.22% 4.20% .041 .039

Matland and Murray (2012)
Brownsville 11,424 7.27% 4.26% 4.23% .088 .086

Green, Gerber, and Nickerson (2003)
Bridgeport 1,806 13.94% 5.41% 5.18% .010 .007
Columbus 2,478 9.97% 7.97% 7.81% .211 .201
Detroit 4,954 8.33% 4.60% 4.54% .070 .067
Minneapolis 2,827 10.24% 8.72% 8.62% .240 .235
Raleigh 2,208 6.35% 6.45% 6.31% .026 .023

Table 3.1: Results of Get-out-the-vote field experiments and observed p-values for âtt when
assuming observations derive from an infinite population or from a finite sample.

the outcome observed by individual i as Wi resulting from Zi such that

Wi = yi1(di(Zi))) + yi0(1− di(Zi)))

If we set wi1 to the outcome for Zi = 1 and wi0 to the outcome when Zi = 0–so that wi1 = wi0

for nevertakers–then
Wi = wi1Zi + wi0(1− Zi)

This eliminates the need to concern ourselves with the received treatment di(), so that
instead of five types of individuals there are only three:

always-respond (AR) are the complier-always-respond and nevertaker-always-respond,
if Zi=0 then Wi = 1, if Zi=1 then Wi = 1.

never-respond (NR) consist of the complier-never-respond and nevertaker-never-respond,
if Zi=0 then Wi = 0, if Zi=1 then Wi = 0.

complier-if-treated-respond(comTR) are just as before,
if Zi=0 then Wi = 0, if Zi=1 then Wi = 1.

Bowers and Hansen also assume there are no (what we call) not-treated-respond subjects.
The primary exercise is to estimate the number of complier-if-treated-respond in the treat-
ment group. Since we may omit the treatment received variable, the table of observations
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collapses to

Assigned Assigned
Control Treatment

No response C0 T0

Responds C1 T1

c t

As in the previous section we view the experimental group as consisting of three types which
are randomly assigned to either the treatment or control so that

T1 = TAR + TcomTR

The TcomTR is what Rosenbaum (2001) refers to as the “attributable effect”, the increase
in observed responses which may be attributed to the causal effect of the treatment. To
estimate the effect, note that if the number of comTR in the treatment group is subtracted
from T1 then

T1 − TcomTR = TAR,

and we are left with number of always-respond assigned to treatment. Since C1 is the
number of always-respond in the control group if TcomTR is known, say TcomTR = k, then
T1 − k = TAR is a hypergeometric random variable equaling the number of always-respond
who end up assigned to treatment.

Formally, under the null hypothesis that TcomTR = k, the random quantity T1 − k follows a
hypergeometric distribution with parameters

Number of objects in the urn = t+ c = n

Number of always-responder objects in the urn = TAR + CAR

= T1 − k + C1

Number of draws from the urn = t

This allows us to compute p-values for different values of k. By doing so for all values of
k from 0 to T1 we take as our 95% confidence interval only those values of k with p-values
below 5%. The estimate of the attributable effect is the value of k with the highest p-
value, also known as the Hodges-Lehmann Point Estimate (Hodges and Lehmann, 1964).
Furthermore, by side stepping issues of compliance there is no need for Assumptions 2
(exclusion restriction) and 5 (some compliers) of Chapter 2. Assumptions 5 (some compliers)
and 6 (monotonicity) are combined and renamed as “non-negativity”, that is, there are no
individuals who respond when assigned to control, but not to treatment. Thus, we have
an approach which gives estimates and confidence bounds for the impact of the treatment
without assuming large sample theory. Such randomization inference methods are have
many advantages, as discussed by Keele, Small, and Grieve (2017)
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3.7 Discussion

In this chapter we evaluate the bias and variance of âtt under two different sampling assump-
tions. The first assumes experimental groups are drawn from an infinite superpopulation
and the second assumes a finite sample of subjects are randomly allocated, without replace-
ment, between the treatment and control groups. The sampling assumptions do matter.
Though the parameter estimates are not dependent on the different assumptions, the two
sampling schemes lead to a different covariance structure among the observations, resulting
in different variances for âtt. We find an approximate value for this difference. As noted in
the previous chapter, because the model is parameterized by the proportion of behavioral
types, the variance formulas under the two sampling assumptions, and their difference, are
also functions of these proportions. However, from a practical point of view, for most social
science field experiments, the choice of the sampling assumption will not make a difference
in the conditions of the experiment. The difference in sampling assumptions impacts the
variance of âtt when the value of the estimate is highly significant, that is, when there is
already strong evidence that âtt > 0. In such a situation, the two sampling assumptions are
the difference between “highly significant” findings and “extremely significant” findings.

For the remainder of this research we assume that observations are from a finite sample,
and we contain ourselves to inference within the experimental sample.

Under the finite sample assumptions, the underlying data generating process for the
table of observations is very similar to a multivariate hypergeometric distribution, as the
five behavioral types are randomly allocated between the treatment and control, without re-
placement. In the final section we show how randomization inference may be useful for small
sample sizes as it does not depend on the large sample sizes needed for the approximations
in the earlier parts of the chapter.
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3.8 Proofs

3.8.1 Proof of Proposition 3.1.1

For this proof we assume the infinite population setting which we restate for clarity. Suppose
an experiment has c control and t treatment subjects such that individuals assigned to the
two experimental conditions are drawn from an infinite population of possible subjects. The
table of observations, when tabulated by the assigned treatment, received treatment and
response is

Assigned Assigned
Control Treatment

Received Received
Control Control Treatment

No response C0 T00 T01

Responds C1 T10 T11

Total c t

where Cy is the total number of subjects assigned to the control with response value y and
Tyd is the total assigned to control with response y and compliance d. The total assigned
to each treatment condition are c and t with c + t = n. Under these sampling assump-
tions, C1 follows a binomial(c, q1) distribution where q1 equals the fraction who respond
if assigned to the control group (that is, the proportion of complier-always-respond and
nevertaker-always-respond in the population). Similarly the distribution of (T01, T01, T10, T11)
is multinomial(t, p00, p01, p10, p11) and independent of (C0, C1).

We begin our proof with four lemmas which, as shall be shown, are the only parts of the
proof which hinge on the sampling assumptions. We prove the same lemmas for the finite
sample setting in the proof of Proposition 3.2.1 in Section 3.8.3.

In this section, for ease of notation, we drop the pop subscript in Epop() as all expectations
are taken with respect to the infinite population assumption.

Lemma 3.8.1.

E (T10 | T01 + T11) =
p10

p00 + p10
(t− (T01 + T11))

Proof. If T01 + T11, the total assigned in the treatment group who receive the treatment, is
known then the number who don’t receive, t− (T01 + T11), is also known. Among those not
receiving treatment, each responds, independently with probability p10/(p00 + p10). Thus
T10 has binomial distribution with the number of trials equaling t− (T01 + T11) and success
probability of p10/(p00 + p10). Multiplying the two yields the expectation.
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Lemma 3.8.2.
E (T11 | T01 + T11) =

p11
p01 + p11

(T01 + T11)

Proof. Since t is fixed, conditioning on those who receive treatment T01 + T11 is the same as
conditioning on those who do not, T00 + T10, so that

E (T11 | T01 + T11) = E (T11 | T00 + T10) ,

and we may employ the same argument from the proof of Lemma 3.8.2. If given T00 + T10,
T11 has binomial distribution with T00+T10 trials and chance of success p11/(p01+p11) which
gives the desired results.

The definition of âtt from equation 2.9 set the estimator to zero if T01 + T11 = 0. More
generally, we define the operator *, for any ratio, such that the ratio equals zero when the
denominator is zero. That is for any any x and y,(

x

y

)∗

=

{
x
y , if y ̸= 0

0, if y = 0.

. We can add and multiply quantities with the * operator, that is(
w + x

y

)∗

=

(
w

y

)∗

+

(
x

y

)∗

(
wx

y

)∗

= w

(
x

y

)∗

.

We use both properties in the proofs of the following to lemmas involving the quantity(
t

T01+T11

)∗
, that is, (

t

T01 + T11

)∗

=

{
t

T01+T11
, if T01 + T11 ≥ 1

0, if T01 + T11 = 0.

Lemma 3.8.3.

E
(

C1

T01 + T11

)∗

= c q1 E
(

1

T01 + T11

)∗

Proof. Using the multiplicative property of the * operator and the independence of Cy and
the Tyd, we may separate the expectation of the numerator and denominator. C1 is binomial
with expectation c q1.
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Lemma 3.8.4.

E
(

t

T01 + T11

)∗

=
1

p01 + p11
+O(1

t
)

Proof. Since T01 + T11 is distributed as binomial(t, p01 + p11), it suffices to show that if X is
a binomial(n,p) random variable then then

E
( n

X

)∗
=

1

p
+O( 1

n
). (3.18)

We prove Equation 3.18 by first noting that

E
( n

X

)∗
= 0 · Pr(X = 0) +

n

1
Pr(X = 1) +

n

2
Pr(X = 2) + ...

= n

n∑
i=1

1

i
Pr(X = i). (3.19)

Now consider a variable Y with the positive binomial distribution, binomial+(n,p), that is
for y = 1, 2, ..., n,

Pr(Y = y) =
Pr(X = y)

1− Pr(X = 0)

=
1

1− (1− p)n
Pr(X = y).

Then

E
( n
Y

)
=

n

1− (1− p)n

n∑
i=1

1

i
Pr(X = i)

and from Equation 3.19

E
( n

X

)∗
= (1− (1− p)n)E

( n
Y

)
(3.20)

The first moment of the inverse of positive binomial random variable has been examined
a number of times in the statistics literature. Perhaps most immediate to our needs is the
finding from Znidaric (2005) that

E
(
1

Y

)
=

np

(np+ 1− p)2

(
1− 3(n− 1)p(1− p)

(np+ 1− p)2
+

4(n− 1)p(1− p)(1− 2p)

(np+ 1− p)3

)
+O( 1

n2 )

=
np

(np+ 1− p)2
(
1 +O( 1

n
) +O( 1

n2 )
)
+O( 1

n2 ).

We multiply both sides of the equation by n and simplify in terms of the order of n. This
gives

E
( n
Y

)
=

n2p

(np+ 1− p)2
(
1 +O( 1

n
) +O( 1

n
)
)
+O( 1

n
)
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=
n2p

(np+ 1− p)2
(
1 +O( 1

n
)
)
+O( 1

n
)

=
p

(p+ 1−p
n
)2

(
1 +O( 1

n
)
)
+O( 1

n
)

=
1

p

(
1 +O( 1

n
)
) (

1 +O( 1
n
)
)
+O( 1

n
)

E
( n
Y

)
=

1

p
+O( 1

n
) (3.21)

Finally, by substituting this result into Equation 3.20 to we have

E
( n

X

)∗
= (1− (1− p)n)E

( n
Y

)
= (1− (1− p)n)

(
1

p
+O( 1

n
)

)
=

1

p
+O( 1

n
)

which is the sufficient condition we need to show from Equation 3.18.

With these four lemmas we return to our our main objective, to prove the following.

Proposition. Suppose:

i The total assigned to treatment, t(n) is such that t(n)/n → β and the total assigned to
control is c(n) = n− t(n).

ii Assume infinite population sampling, that is, C1 is binomial(c(n), q1) and (T01, T01, T10, T11)
is multinomial(t(n), p00, p01, p10, p11).

iii The average treatment effect for the treated is defined as

att = h(p) =
p10 + p11 − q1

p01 + p11
,

which is estimated by

âtt =


h(p̂) =

T10 + T11

t(n)
− C1

c(n)
T01 + T11

t(n)

if T01 + T11 > 0

0 if T01 + T11 = 0.



www.manaraa.com

45

Then the order of the bias is 1/n, or

Epop(âtt) = att+O( 1
n
).

Note: though not stated explicitly, each random quantity above, such as âtt, C1, etc., is
indexed by n. We remove the index for ease of notation.

Proof. For ease of notation we write c for c(n) and t for t(n) and drop the pop subscript in
Epop() as all expectations are taken with respect to the infinite population assumption.

E(âtt) = E

(
T10+T11

t
− C1

c
T01+T11

t

)∗

= E
(

T10

T01 + T11

)∗

︸ ︷︷ ︸
(a)

+E
(

T11

T01 + T11

)∗

︸ ︷︷ ︸
(b)

−E
( t

c
C1

T01 + T11

)∗

︸ ︷︷ ︸
(c)

(3.22)

We aim to understand how the three components from Equation 3.22 correspond with their
analouges of Equation 2.15, that is, how (a), (b) and (c) correspond to

p10
p01 + p11

,
p11

p01 + p11
and

q1
p01 + p11

.
We address each component in turn, by taking a double expectation, conditioning on T01 +
T11. Starting with (a),

(a) = E
(

T10

T01+T11

)∗
= E

[
E
((

T10

T01+T11

)∗
| T01 + T11

)]
= E

[(
1

T01+T11

)∗
E (T10 | T01 + T11)

]
= E

[(
1

T01+T11

)∗ p10
p00 + p10

(t− (T01 + T11))

]
, by Lemma 3.8.1

=
p10

p00 + p10
E
(
t− (T01 + T11)

T01 + T11

)∗

=
p10

p00 + p10
E
[(

t

T01 + T11

)∗

−
(
T01 + T11

T01 + T11

)∗ ]
.

The first term of the expectation is given by Lemma 3.8.4 and the second term is 1 unless
T01 + T11=0 so that

(a) =
p10

p00 + p10

(
1

p01 + p11
+O

(
1
t

)
− ( 1− Pr(T01 + T11 = 0) )

)
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=
p10

p00 + p10

(
1

p01 + p11
+O

(
1
t

)
− 1 + (1− p01 − p11)

t

)
=

p10
p00 + p10

(
1

p01 + p11
− 1 +O

(
1
t

))

Recall that p00 + p01 + p10 + p11 = 1. Then 1
p01+p11

− 1 = 1−(p01+p11)
p01+p11

= p00+p01
p01+p11

so that,

(a) =
p10

p00 + p10

(
p00 + p01
p01 + p11

+O
(
1
t

))
=

p10
p01 + p11

+O
(
1
t

)
For (b) we have

(b) = E
(

T11

T01 + T11

)∗

= E
[
E
((

T11

T01 + T11

)∗

| T01 + T11

)]
= E

[(
1

T01 + T11

)∗

E (T11 | T01 + T11)

]
= E

[(
1

T01 + T11

)∗
p11

p01 + p11
(T01 + T11)

]
, by Lemma 3.8.2

=
p11

p01 + p11
E
(
T01 + T11

T01 + T11

)∗

=
p11

p01 + p11
( 1− Pr(T01 + T11 = 0) ).

For (c),

(c) =
t

c
E
(

C1

T01 + T11

)∗

= t q1 E
(

1

T01 + T11

)∗

, by Lemma 3.8.3

= q1 E
(

t

T01 + T11

)∗

=
q1

p01 + p11
+O

(
1
t

)
We may now insert each of the components into Equation 3.22.
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E(âtt) = (a) + (b)− (c)

=
p10

p01 + p11
+O

(
1
t

)
+

p11
p01 + p11

( 1− Pr(T01 + T11 = 0) )− q1
p01 + p11

+O
(
1
t

)
=

p10 + p11 − q1
p01 + p11

− p11
p01 + p11

Pr(T01 + T11 = 0) +O
(
1
t

)
=

p10 + p11 − q1
p01 + p11

− p11
p01 + p11

(1− p01 − p11)
t +O

(
1
t

)
= att+O

(
1
t

)
As O(1/t) is O(1/n) we have the desired result.

Remark. Aside from the lemmas, the sampling assumptions are only used to show that
Pr(T01 + T11 = 0) = O(1/t), which also folds for finite sampling. Thus to obtain this result
for the finite sampling case we need only show that Lemmas 3.8.1 - 3.8.4 hold for the finite
sample assumptions as well. This how we proceed to prove Proposition 3.2.1 later in this
section.

3.8.2 Proof of Proposition 3.1.2

Proposition. Suppose the assumptions of Proposition 3.1.1 then

√
n(âtt− att)

d→ N(0,∇h(p)′Σpop∇h(p)).

Proof. We first note that in this proof all random quantities, âtt, p̂, Cy, Tyd, etc., are indexed
by n. We leave the index implicit for ease of notation. Also, rather than addressing the
discontinuity of âtt when T01 + T11 = 0 we observe that âtt converges in probability to h(p̂)
so it will suffice to show that

√
n(h(p̂)− h(p))

d→ N(0,∇h(p)′Σpop ∇h(p)).

To show this we employ the delta method for convergence in distribution (see Bishop et al.,
1975, p. 493) and the first step is to show the asymptotic normality of p̂ = (q̂1, p̂01, p̂10, p̂11).
Since C1 is binomial(c(n), q1), it is the sum of c(n) independent Bernoulli random variables,
each with finite variance of q1(1− q1). Using q̂1 for C1/c(n), by the Central Limit Theorem
we have √

cn(q̂1 − q1)
d→ N(0, q1(1− q1)).

We multiply the right hand side by
√
n/cn which goes to

√
1/β by assumption. Then, by

Slutsky’s Theorem we have √
n/cn

√
cn(q̂1 − q1)

d→
√

1/βZ,
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where Z is N(0, q1(1− q1)) so that

√
n(q̂1 − q1)

d→ N(0,
q1(1− q1)

β
).

Similarly, (T00, T01, T10, T11) is multinomial and the average counts converge to a normal
distribution as t(n) → ∞ (see Bishop et al., 1975, p 469). Using the same arguments as
above we have

√
n [ (p̂01, p̂10, p̂11)− (p01, p10, p11) ]

d→ N(0,Σpop[2 : 4][2 : 4]).

where [2:4][2:4] denotes the the 3 × 3 sub-matrix of Σpop without the first row and first
column. Taken together, since q̂1 and (p̂01, p̂10, p̂11) are independent, p̂ = (q̂1, p̂01, p̂10, p̂11)
will converge to a normal distribution,

√
n(p̂− p)

d→ N(0,Σpop).

With the asymptotic normality of p̂ established, the final condition to use the delta
method is to confirm the partial derivatives of h() exist for a neighborhood around p. We
see that

∇h(p) =



∂h
∂q1

∂h
∂p01

∂h
∂p10

∂h
∂p11


=



− 1
p01+p11

q1−p10−p11
(p01+p11)2

1
p01+p11

q1+p01−p10
(p01+p11)2


.

It is apparent that ∇h(p) is continuous and exists p as long as p01+ p11 ̸= 0. This condition
holds by the “there are some compliers” assumption of Chapter 2. Thus, we may approximate
h(p̂) with a first order Taylor’s expansion of h() around p, that is,

h(p̂) = h(p) + (p̂− p)∇h(p) + o (∥(p̂− p)∥) ,

so that the asymptotic distribution of h(p̂) is given by

√
n(h(p̂)− h(p))

d→ N(0,∇h(p)′Σpop ∇h(p)).

This concludes the proof.

3.8.3 Proof of Proposition 3.2.1

In the finite sample case, the underlying distribution generating the table of observations
is multivariate hypergeometric. Here, the parameters are the totals assigned to control and
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treatment, c and t such that c + t = n, and also the totals of each of the finite behavioral
types: ncomAR, ncomNR, ncomTR, nnevAR and nnevNR. The totals of the behavioral types sum
to n. We re-parameterize the model with (q1, p01, p10, p11) where

q1 =
ncomAR + nnevAR

n

p01 =
ncomNR

n

p10 =
nnevAR

n

p11 =
ncomAR + ncomTR

n

and p00 = nnevNR/n is redundant as p00 = 1− p01 − p10 − p11.
As with the proof of Proposition 3.1.1, the argument depends on the following four

lemmas which are the finite sample analouges to Lemmas 3.8.1 – 3.8.4. In this section, for
ease of notation, we drop the samp subscript in Esamp() as all expectations are taken with
respect to the finite sample assumption.

Lemma 3.8.5.
E (T10 | T01 + T11) =

p10
p00 + p10

(t− (T01 + T11))

Proof. T10 is the number of nevertaker-always-respond assigned to treatment. T01 + T11

are the number of compliers assigned to treatment and if they are known, the number of
compliers assigned to control is also given. Under these conditions, T10 is distributed as a
hypergeometric distribution, counting number of successful events, from a pool of nnevAR

“successes”, nnevNR “failures” and t − (T01 + T11) draws without replacement. Thus the
expected number of successful draws is

nnevAR

nnevNR + nnevAR

(t− (T01 + T11)) =
p10

p00 + p10
(t− (T01 + T11)) .

Lemma 3.8.6.
E (T11 | T01 + T11) =

p11
p01 + p11

(T01 + T11)

Proof. First we note that since T00+T10 = t−(T01+T11), if T01+T11 is known then T00+T10

is known, so that
E (T11 | T01 + T11) = E (T11 | T00 + T10) .

We focus on the right hand side of the equation. T11 is the number of complier-always-
respond and comTR assigned to treatment. Given T00 + T10 the number of nevertakers
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assigned to treatment and the number of nevertakers assigned to control is known. As
was argued in the proof of Lemma 3.8.5, under these conditions T11 is hypergeometric with
ncomAR + ncomTR “successes” and ncomNR “failures” and we draw T01 + T11 times without
replacement. Thus the expected number of successful draws is

ncomAR + ncomTR

ncomAR + ncomTR + ncomNR

(T01 + T11) =
p11

p01 + p11
(T01 + T11).

Lemma 3.8.7.

E
(

C1

T01 + T11

)∗

= c q1 E
(

1

T01 + T11

)∗

Proof.

E
(

C1

T01 + T11

)∗

= E
[
E
((

C1

T01 + T11

)∗

| T01 + T11

)]
= E

[
E
((

CcomAR + CnevAR

T01 + T11

)∗

| T01 + T11

)]
= E

[(
1

T01+T11

)∗
E (CcomAR + CnevAR | T01 + T11)

]
= E

[(
1

T01+T11

)∗
E (CcomAR | T01 + T11)

]
+E

[(
1

T01+T11

)∗
E (CnevAR | T01 + T11)

]
We apply the Law of Iterated Expectations to each of the inner expectations, conditioning
on TcomAR in the first and on TnevAR in the second so that

= E
[(

1
T01+T11

)∗
E (E {CcomAR | T01 + T11, TcomAR})

]
+E

[(
1

T01+T11

)∗
E (E {CnevAR | T01 + T11, TnevAR})

]
If TcomAR is known then CcomAR is known so that E {CcomAR | T01 + T11, TcomAR} is simply
CcomAR. Similarly, if TnevAR is known then CnevAR is known. Thus

= E
[(

1
T01+T11

)∗
E (CcomAR)

]
+ E

[(
1

T01+T11

)∗
E (CnevAR)

]
= E

[(
1

T01+T11

)∗
c
ncomAR

n

]
+ E

[(
1

T01+T11

)∗
c
nnevAR

n

]
= c

ncomAR + nnevAR

n
E
[(

1
T01+T11

)∗]
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= c q1 E
(

1

T01 + T11

)∗

Lemma 3.8.8.

E
(

t

T01 + T11

)∗

=
1

p01 + p11
+O(1

t
)

Proof. We may use a nearly identical proof to that of Lemma 3.8.4, which obtained the
desired result for the infinite sampling case where T01 +T11 was binomial(t, p01 + p11). Here,
T01 + T11 is hypergeometric(n, n(p01 + p11), t) where n represents the total number objects,
n(p01 + p11) is the total “successes” and t is the number of draws. It suffices to show that if
X is hypergeometric(N,Np, n) then

E
( n

X

)∗
=

1

p
+O( 1

n
).

We follow the exact argument in the proof of Lemma 3.8.4 so the only relation we need to
show is the finite sample equivalent of Equation 3.21. That is

E
( n
Y

)
=

1

p
+O( 1

n
),

where Y is a positive hypergeometric(N,Np, n) random variable, that is, for j = 1, 2, ...,

Pr(Y = j) = Pr(X = j)/Pr(X > 0).

To prove this we use a result from Stephan (1945, p. 60) that

E
(
1

Y

)
=

k∑
i=1

ui + E(Rk(Y )) (3.23)

where

u1 =
(N + 1)s1

(Np+ 1)(n+ 1)s2
(3.24)

and

s0 = Pr(X > 0)

s1 = 1−
i∑

j=0

Pr(X ′ = j), where X ′ is hypergeometric(N + i, Np+ i, n+ i)
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So for small i, si → 1, rapidly, as n → ∞ and from Equation 3.24 we have

u1 =
1

pn
+ o(1)

There is a recursive relationship between ui+1 and ui which gives

u2 =
(N + 2)s2

(Np+ 2)(n+ 2)s1
u1

=

(
N

Npn
+ o(1)

)(
1

pn
+ o(1)

)
=

1

p2n2
+ o(1).

Furthermore, E(R2(Y )) ≤ 2u2. From Equation 3.23, expanding to two terms (k = 2), we
have

E
(
1

Y

)
= u1 + u2 + E(R2(Y ))

=
1

pn
+ o(1) +

1

p2n2
+ o(1) + 2

(
1

p2n2
+ o(1)

)
=

1

pn
+O

(
1

n2

)
Multiplying both sides n gives the desired result.

We return to our our main objective, to prove the following.

Proposition. Suppose:

i The total assigned to treatment, t(n) is such that t(n)/n → β and the total assigned to
control is c(n) = n− t(n).

ii Assume finite population sampling as described in Section 3.2. That is, the five different
behavioral types are randomly allocated without replacement. This results in the counts
(C0, C1, T00, T01, T10, T11) found via the relationships in Equations 3.6 - 3.11.

iii The proportion parameters for each finite n, p(n) = (q1(n), p01(n), p10(n), p11(n)), con-
verge to the limiting vector p∞ = (q∞1 , p∞01, p

∞
10, p

∞
11) as follows:

q1(n) = q∞1 +O(1/n)

p01(n) = p∞01 +O(1/n)

p10(n) = p∞10 +O(1/n)

p11(n)) = p∞11 +O(1/n)
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iv The average treatment effect for the treated is defined as

att(n) = h(p(n)) =
p10(n) + p11(n)− q1(n)

p01(n) + p11(n)
,

which is estimated by

âtt(n) =


h(p̂) =

T10 + T11

t(n)
− C1

c(n)
T01 + T11

t(n)

if T01 + T11 > 0

0 if T01 + T11 = 0.

Then the order of the bias is 1/n, or

Esamp(âtt) = att(n) +O( 1
n
).

Proof. Our argument is nearly identical to the one provided in Section 3.8.1 of Proposition
3.1.1 if we substitute Lemmas 3.8.5 - 3.8.8 for Lemmas 3.8.1– 3.8.4 and note that Pr(T01 +
T11 = 0) = O(1/t).

One final consideration is that the proportion parameters in the infinite sampling case,
p = (q1, p01, p10, p11), are now indexed by n, so the parameters in the prior proof must be
replaced with p(n) = (q1(n), p01(n), p10(n), p11(n)).

Noting these two changes, this proof follows along the lines of the proof for the infinite
sampling case.

3.8.4 Proof of Proposition 3.2.2

Proposition. Suppose the assumptions of Proposition 3.2.1 then

√
n(âtt− att)

d→ N(0,∇h(p)′Σsamp∇h(p)).

Proof. Preliminary note: The proportion parameters p(n) = (q1(n), p01(n), p10(n), p11(n))
are indexed by n though for ease of exposition we drop the index and write them as
p = (q1, p01, p10, p11). This also holds for att, which is a limiting function of the compo-
nents of p(n), but we ignore this important distinction in our argument below.

As in the proof of Proposition 3.1.2, we observe that the difference between âtt and h(p̂)
converges in probability to zero, or

âtt− h(p̂)
P→ 0,

so it suffices to show

√
n(h(p̂)− h(p))

d→ N(0,∇h(p)′ Σsamp∇h(p)).
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Earlier in the chapter we noted that, under finite sampling, the asymptotic normality of
treatment effect estimators does not hold, in general. Recently though, Li and Ding (2017,
pp. 1763-1764) establish conditions under which such estimators are asymptotically normal.
We focus our attention on Theorems 3 and 5 of their article. The theorems apply to a range
of experimental designs but, for clarity of our own arguement, we present their findings,
and describe the required conditions, in terms of our setting, using the notation we have
introduced in the last two chapters. We use results from Li and Ding to show the bivariate
vector, (

îtt, p̂com

)
,

converges to a normal distribution. Here p̂com represents the observed fraction of compliers
so we may write the bivariate vector as

(p̂10 + p̂11 − q̂1, p̂01 + p̂11) ,

which are the numerator and denominator for h(p̂). We then apply the delta method to the
ratio to arrive at the desired asymptotic distribution.

We begin by specifying terms used for Theorems 3 and 5. Recall the notation from
Chapter 2 with a control and just one treatment, so the “assignment”, z, is 0 or 1. For
assignment z, subject i will have binary response yiz and a value for “treatment”, diz, an
indicator of whether the treatment was received. Therefore, for assignment z and i =
1, 2, ..., n we have a two-dimensional potential outcome vector,

riz = (yiz, diz)
⊺ .

(Note that Li and Ding refer to riz as Yi(z)). Furthermore, let

A0 =

(
−1 0
0 −1

)
, A1 =

(
1 0
0 1

)
,

and define

τ i(A) =
1∑

z=0

Azriz ,

so that

τ i(A) =

(
−1 0
0 −1

)(
yi0
di0

)
+

(
1 0
0 1

)(
yi1
di1

)
=

(
yi1 − yi0
di1 − di0

)
=

(
yi1 − yi0

di1

)
,
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where the last equality holds because di0 = 0, as subjects assigned to the control cannot
receive the treatment. Thus, τ i(A) is the individual causal effect consisting of the treatment
effect for subject i and an indicator of whether they are a complier. The average causal effect
over the n subjects is

τ (A) =
1

n

n∑
i=1

τ i(A)

=
1

n

n∑
i=1

(
yi1 − yi0

di1

)

≡
(

itt
pcom

)
,

by the definition of itt from Chapter 2 and the description of pcom at the beginning of the
proof. We estimate τ (A) with

τ̂ (A) =

(
îtt
p̂com

)
.

To show
(
îtt, p̂com

)
converges to a normal distribution we must show

√
n (τ̂ (A)− τ (A)) is

asymptotically normal. To meet the conditions of Theorems 3 and 5 we must evaluate the
three following 2-by-2 matrices representing the covariances of the potential outcomes over
the n subjects.

S2
0 =

1

n− 1

n∑
i=1

(
yi0 − y0, di0 − d0

)⊺ (
yi0 − y0, di0 − d0

)
S2
1 =

1

n− 1

n∑
i=1

(
yi1 − y1, di1 − d1

)⊺ (
yi1 − y1, di1 − d1

)
S01 =

1

n− 1

n∑
i=1

(
yi0 − y0, di0 − d0

)⊺ (
yi1 − y1, di1 − d1

)
where yz and dz represent the average potential outcome values for the n subjects under
assignment z. The conditions require each matrix to have a limiting value as n → ∞. We
demonstrate this for S2

0 , evaluating each entry. As di0 = 0 we have

S2
0 =

1

n− 1

n∑
i=1

(yi0 − y0, 0)
⊺ (yi0 − y0, 0) ,

so that the (1,1) entry of S2
0 is,

S2
0(1, 1) =

1

n− 1

n∑
i=1

(yi0 − y0)
2 .
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We know y0 = q1 and that among the n subjects there are nq1 always-respond types with
yi0 = 1. The remaining n(1− q1) subjects have yi0 = 0. Thus,

S2
0(1, 1) =

1

n− 1
(nq1(1− q1)

2 + n(1− q1)(0− q1)
2)

=
1

n− 1
n(1− q1)(q1(1− q1) + q21)

=
1

n− 1
n(1− q1)q1,

which has limiting value q1(1− q1) as n → ∞. For the other entries, because di0 = 0 for all
i,

S2
0(1, 2) = S2

0(2, 1) = S2
0(2, 2) = 0.

This means S2
0 has limiting value. By evaluating S2

1 and S01 in the same manner, it can be
shown they too have similar limiting values of polynomials of q1, p01, p10 and p11.

We now apply Theorem 5 of Li and Ding (which refers to conditions of Theorem 3) which
we state below in terms of the quantities defined earlier in the proof.

Theorem 5. Under the setting of Theorem 3 (a completely randomized experiment
with n units, two treatments and let riz ∈ R2 be unit i’s potential outcome (for assign-
ment z). If S2

0 , S2
1 and S01 have limiting values, t(n)/n has positive limiting value and

max0≤z≤1max1≤i≤n∥riz − rz∥/n → 0, then nVarsamp(τ̂ (A)) has a limiting value, denoted by
V, and √

n (τ̂ (A)− τ (A)) → N(0,V)

Since 0 ≤ yiz, diz ≤ 1 the last condition on ∥riz − rz∥/n holds and we have shown the result

of the theorem. Stated in terms of îtt and p̂com, we have shown that(
(îtt, p̂com)

⊺ − (itt, pcom)
⊺
)
→ N((0, 0)⊺,V) (3.25)

To evaluate V, we have (where we drop the subscript samp of Varsamp() for ease of notation)

V = nVar(τ̂ (A))

= nVar

(
îtt
p̂com

)

= n


Var

(
îtt
)

Cov
(
îtt, p̂com

)
Cov

(
îtt, p̂com

)
Var (p̂com)

 , (3.26)
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where

Var
(
îtt
)
=Var(p̂10 + p̂11 − q̂1)

=Var(p̂10)+Var(p̂11)+Var(q̂1)+2Cov(p̂10, p̂11)−2Cov(p̂10, q̂1)−2Cov(p̂11, q̂1)

Var(p̂com)=Var(p̂01 + p̂11)

=Var(p̂01)+Var(p̂11)+2Cov(p̂01, p̂11)

Cov
(
îtt, p̂com

)
=Cov(p̂10 + p̂11 − q̂1, p̂01 + p̂11)

=Var(p̂11)+Cov(p̂10, p̂01)+Cov(p̂10, p̂11)+Cov(p̂01, p̂11)−Cov(q̂1, p̂01)

−Cov(q̂1, p̂11)

and the variance and covariance formulas can be found from Σsamp in Equation 3.13 and
then used to solve for V from Equation 3.26.

With the normality of (îtt, p̂com) established, consider g(itt, pcom) = itt/pcom so that

g(itt, pcom) = h(p)

and
g(îtt, p̂com) = h(p̂),

where the gradient, ∇g, is

∇g(itt, pcom) =

 ∂g
∂itt

∂g
∂pcom

 =

 1
pcom

− itt
p2com

 .

It can be shown that

∇h(p)′Σsamp∇h(p) = ∇g(itt, pcom)
⊺V∇g(itt, pcom)

Therefore, the desired result of

√
n(h(p̂)− h(p))

d→ N(0,∇h(p)′ Σsamp∇h(p)),

is equivalent to showing

√
n
(
g(îtt, p̂com)− g(itt, pcom)

)
d→ N(0,∇g(itt, pcom)

⊺ V∇g(itt, pcom)), (3.27)

which we may be done via the delta method.
To apply the delta method we note the asymptotic normality of (îtt, p̂com) established

in Equation 3.25. From ∇g, the partial derivatives of g() are continuous and exist around
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(itt, pcom) as long as pcom ̸= 0. This holds by the “there are some compliers” assumption

of Chapter 2. Thus, we approximate g(îtt, p̂com) with a first order Taylor’s expansion of g()
around (itt, pcom), that is,

g(îtt, p̂com) = g(itt, pcom) +
(
(îtt, p̂com)− (itt, pcom)

)
∇g(itt, pcom)

+ o
(
∥
(
(îtt, p̂com)− (itt, pcom)

)
∥
)
,

so that the asymptotic distribution of g(îtt, p̂com) is given by Equation 3.27. This concludes
the proof.

Note: In this argument we present the outcome of assignment as a two-dimensional vector
of the response and the treatment received. We return to this notion in the next chapter
when develop a formal definition for a behavioral type.

3.8.5 Proof of Proposition 3.4.1

Proposition. The difference in the asymptotic variances of âtt under infinite and finite
sampling has the following form.

∇h(p)′ 1
n
Σpop ∇h(p)−∇h(p)′ 1

n
Σsamp ∇h(p) =

pcomTR(pcomAR + pcomNR)

n(pcomAR + pcomNR + pcomTR)3

− 1
n(n−1)

∇h(p)′ {(1− β)Σpop +Σgap}∇h(p)

Proof. Before proceeding, we restate the definitions for ∇h(p), Σpop and Σgap, as these are
employed early in the proof.

∇h(p) =



∂h
∂q1

∂h
∂p01

∂h
∂p10

∂h
∂p11


=



− 1
p01+p11

q1−p10−p11
(p01+p11)2

1
p01+p11

q1+p01−p10
(p01+p11)2


,
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Σpop =
1

β


β

(1−β)
q1(1−q1) 0 0 0

0 p01(1− p01) −p01p10 −p01p11

0 −p01p10 p10(1− p10) −p10p11

0 −p01p11 −p10p11 p11(1− p11)


and

Σgap =


(2β−1)
(1−β)

q1(1−q1) q1p01 −p10(1−q1) p10−q1(1−p11)

q1p01 0 0 0

−p10(1−q1) 0 0 0

p10−q1(1−p11) 0 0 0

 .

We begin by using Equation 3.16 to substitute Σsamp in terms of Σpop, Σgap and β.

∇h(p)′ 1
n
Σpop ∇h(p)−∇h(p)′ 1

n
Σsamp ∇h(p)

= 1
n
∇h(p)′ [Σpop −Σsamp]∇h(p)

= 1
n
∇h(p)′

[
Σpop − (1− β)Σpop −Σgap − 1

n−1
{(1− β)Σpop +Σgap}

]
∇h(p)

= 1
n
∇h(p)′

[
βΣpop −Σgap − 1

n−1
{(1− β)Σpop +Σgap}

]
∇h(p)

= 1
n
∇h(p)′ [βΣpop −Σgap]∇h(p) − 1

n(n−1)
∇h(p)′ {(1− β)Σpop +Σgap}∇h(p)

so the second term is the same as the second term we are hoping to show. Thus, to complete
the proof it is enough to show

1
n
∇h(p)′ [βΣpop −Σgap]∇h(p) =

pcomTR(pcomAR + pcomNR)

n(pcomAR + pcomNR + pcomTR)3
. (3.28)

As we see from their definitions, the only entries where both a and a are nonzero is the
(1, 1) position. This term of βΣpop −Σgap equal

β

1− β
q1(1− q1)−

2β − 1

1− β
q1(1− q1) = −β − 1

1− β
q1(1− q1) = q1(1− q1).
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Thus we return to showing Equation 3.28 holds with

1
n
∇h(p)′ [βΣpop −Σgap]∇h(p)

= 1
n
∇h(p)′


q1(1− q1) −q1p01 p10(1− q1) −p10 + q1(1− p11)

−q1p01 p01(1− p01) −p01p10 −p01p11

p10(1− q1) −p01p10 p10(1− p10) −p10p11

−p10 + q1(1− p11) −p01p11 −p10p11 p11(1− p11)

∇h(p),

a quadratic form yielding a sum of ten terms. We simplify ∇h(p) by denoting the fraction
of compliers as pc which equals p01 + p11 = pcomAR

+ pcomNR
+ pcomTR

. Also note that
q1 − p10 − p11 = −pcomTR

and that q1 + p01 − p10 = pcomAR
+ pcomNR

. Substituting these gives

∇h(p)′ =

(
− 1

pc
, −pcomTR

p2c
,
1

pc
,
pcomAR

+ pcomNR

p2c

)
.

So that the quadric form written as the sum of ten terms is

=
1

n p4c

{
q1(1− q1)p

2
c + p01(1− p01)p

2
comTR

+ p10(1− p10)p
2
c + p11(1− p11)(pcomAR

+ pcomNR
)2

− 2q1p01pcomTR
pc − 2p10(1− q1)p

2
c − 2(−p10 + q1(1− p11))(pcomAR

+ pcomNR
)pc

+ 2p01p10pcomTR
pc + 2p01p11pcomTR

(pcomAR
+ pcomNR

) − 2p10p11(pcomAR
+ pcomNR

)pc } .

Rearranging to group like terms gives

=
1

n p4c

{
q1(1− q1)p

2
c − 2p10(1− q1)p

2
c︸ ︷︷ ︸

(a)

− 2q1p01pcomTR
pc + 2p01p10pcomTR

pc︸ ︷︷ ︸
(b)

+ p10(1− p10)p
2
c︸ ︷︷ ︸

(c)

−2(−p10 + q1(1− p11))(pcomAR
+ pcomNR

)pc − 2p10p11(pcomAR
+ pcomNR

)pc︸ ︷︷ ︸
(d)

+ p01(1− p01)p
2
comTR

+ p11(1− p11)(pcomAR
+ pcomNR

)2 + 2p01p11pcomTR
(pcomAR

+ pcomNR
)

}
.

(3.29)

We now simplify (a), (b), (c) and (d). First, for (a) we note that as q1 = pcomAR
+ pneverAR

and pneverAR
= p10, we have q1 − 2p10 = pcomAR

+ p10 − 2p10 = pcomAR
− p10. So

(a) = q1(1− q1)p
2
c − 2p10(1− q1)p

2
c
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= (q1 − 2p10)(1− q1)p
2
c

= (pcomAR
− p10)(1− q1)p

2
c .

For (b), we use the same substitution for q1, noting that q1 − p10 = pcomAR
.

(b) = − 2q1p01pcomTR
pc + 2p01p10pcomTR

pc

= − 2(q1 − p10)p01pcomTR
pc

= − 2pcomAR
p01pcomTR

pc

= − 2p01pcomAR
pcomTR

pc

Then, using q1 = pcomAR
+ p10,

(a) + (b) + (c) = (pcomAR
− p10)(1− q1)p

2
c − 2p01pcomAR

pcomTR
pc + p10(1− p10)p

2
c

= (pcomAR
− p10)(1− pcomAR

− p10)p
2
c − 2p01pcomAR

pcomTR
pc + p10(1− p10)p

2
c

= [ (pcomAR
− p10)(1− pcomAR

− p10) + p10(1− p10)] p
2
c − 2p01pcomAR

pcomTR
pc

=
[
pcomAR

− p2comAR
− p10pcomAR

− p10 + p10pcomAR
+ p210 + p10 − p210

]
p2c

− 2p01pcomAR
pcomTR

pc

=
[
pcomAR

− p2comAR

]
p2c − 2p01pcomAR

pcomTR
pc

= pcomAR
(1− pcomAR

)p2c − 2p01pcomAR
pcomTR

pc

.

Finally, in (d), we use p10 − q1 = −pcomAR
so that.

(d) = −2(−p10 + q1(1− p11))(pcomAR
+ pcomNR

)pc − 2p10p11(pcomAR
+ pcomNR

)pc

= 2(p10 − q1(1− p11)− p10p11)(pcomAR
+ pcomNR

)pc

= 2(p10 − q1 + q1p11 − p10p11)(pcomAR
+ pcomNR

)pc

= 2(p10 − q1 − p11(p10 − q1)(pcomAR
+ pcomNR

)pc

= 2(1− p11)(p10 − q1)(pcomAR
+ pcomNR

)pc

= 2(1− p11)(−pcomAR
)(pcomAR

+ pcomNR
)pc

= −2(1− p11)pcomAR
(pcomAR

+ pcomNR
)pc

We are ready to substitute (a)+(b)+(c) and (d) into Equation 3.29. Before doing so we notice
that all terms with q1 and p10 have canceled. Since p01 = pcomNR

and p11 = pcomAR
+ pcomTR

,
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all of the terms in Equation 3.29 consist of the fractions of complier types: pcomAR
, pcomNR

and pcomTR
. For ease of notation, in this proof only, we shall denote these three quantities

as A, N and T where

A = pcomAR

N = pcomNR

T = pcomTR

so that

p01 = N

p11 = A+ T

pc = A+N + T

We may apply these equalities to represent Equation 3.29 in terms of just n, A, N and T .
That is:

1
n
∇h(p)′ [βΣpop −Σgap]∇h(p)

= 1
n (A+N+T )4

{
A(1− A)(A+N + T )2 − 2ANT (A+N + T )︸ ︷︷ ︸

(a) + (b) + (c)

− 2A(1− A− T )(A+N)(A+N + T )︸ ︷︷ ︸
(d)

+N(1−N)T 2 + (A+ T )(1− A− T )(A+N)2 + 2NT (A+ T )(A+N)

}
.

Collecting the first three terms along A(A+N+T ) and the last two along (A+T )(1−A−T )
gives

= 1
n (A+N+T )4

{
[ (1− A)(A+N + T )− 2NT − 2(1− A− T )(A+N) ]A(A+N + T )

+N(1−N)T 2 + [ (1− A− T )(A+N) + 2NT ](A+ T )(A+N)
}

= 1
n (A+N+T )4

{
[A+N + T − A2 − AN − AT − 2NT

− 2A+ 2A2 + 2AT − 2N + 2AN + 2NT ]A(A+N + T )
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+N(1−N)T 2 + [A− A2 − AT +N − AN −NT + 2NT ](A+ T )(A+N)
}

= 1
n (A+N+T )4

{
[A2 − A+ AN + AT −N + T ]A(A+N + T )

+N(1−N)T 2 + [−(A2 − A+ AN + AT −N) +NT ](A+ T )(A+N)
}
.

Let α = A2 − A+ AN + AT −N so that

= 1
n (A+N+T )4

{
(α + T )A(A+N + T )

+N(1−N)T 2 + (−α +NT )(A+ T )(A+N)
}
.

Now we expand terms to collect along A(A+ T ).

= 1
n (A+N+T )4

{
(α + T )A(A+ T ) + (α + T )AN

+N(1−N)T 2 + (−α +NT )A(A+ T ) + (−α +NT )N(A+ T )
}

= 1
n (A+N+T )4

{
(T +NT )A(A+ T ) + ANT + αAN

+N(1−N)T 2 + (−α +NT )N(A+ T )
}

and collect along α

= 1
n (A+N+T )4

{
(T +NT )A(A+ T ) + ANT

+N(1−N)T 2 +N2T (A+ T ) + α(AN − AN −NT )
}

= 1
n (A+N+T )4

{
(T +NT )A(A+ T ) + ANT

+N(1−N)T 2 +N2T (A+ T ) − αNT
}

= 1
n (A+N+T )4

{
A2T + A2NT + AT 2 + ANT 2 + ANT

+NT 2 −N2T 2 +N2T 2 + AN2T − αNT
}

the N2T 2 terms cancel and we expand the α in the last term so that

= 1
n (A+N+T )4

{
A2T + A2NT + AT 2 + ANT 2 + ANT +NT 2 + AN2T

− (A2 − A+ AN + AT −N)NT
}
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= 1
n (A+N+T )4

{
A2T + A2NT + AT 2 + ANT 2 + ANT +NT 2 + AN2T

− A2NT + ANT − AN2T − ANT 2 +N2T
}
.

The A2NT , AN2T and ANT 2 terms all cancel to give

= 1
n (A+N+T )4

{
A2T + AT 2 + 2ANT +NT 2 +N2T

}
= 1

n (A+N+T )4

{
T (A2 + AT + 2AN +NT +N2)

}
= 1

n (A+N+T )4

{
T [ (A+N)2 + AT +NT ]

}
= 1

n (A+N+T )4

{
T [ (A+N)2 + T (A+N) ]

}
= 1

n (A+N+T )4

{
T [ (A+N)(A+N + T ) ]

}
=

T (A+N)

n (A+N + T )3

and returning to our original notation we have

=
pcomTR(pcomAR + pcomNR)

n(pcomAR + pcomNR + pcomTR)3
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Chapter 4

Understanding Behavioral Types

In this chapter we provide precise definitions of the terms behavioral type and restriction
introduced in the Chapter 2. These two definitions apply when treatment assigned, treat-
ment received, and outcomes take on a discrete, finite number of values. We show that in
experimental settings with these conditions we may understand each subject of the sample
as belonging to one of a finite number of distinct types. As was seen in section 2.2, treat-
ment effects are simply proportions of these distinct behavioral types. After presenting the
definitions we demonstrate how the concepts are applied in three separate examples.

4.1 Formal Definitions

For an experiment, let Z be the space of possible assignments to treatment and D be the
space of possible treatment received. Usually we have Z = D. Let Y be the space of possible
outcomes. We now introduce our first formal definition.

Definition 4.1.1. A behavioral type, f , is simply a function, f : Z 7→ D×Y , or f(z) = (d, y).

We saw a number of examples of behavioral types in Chapter 2 such as the comTR, which
receive the treatment assigned and vote only if assigned to the treatment group. With a
finite number of assigned and received treatments it is helpful to visualize a behavioral type,
such as the comTR, with the two dimensional array

Moving across the first row, the treatment assignment is z = 0. The column in the first
row with a value indicates the treatment received for z = 0, or d = 0. The value inside
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of that cell represents the outcome, y = 0. Similarly, if z = 1 then d = 1 and y = 1.
As before, a behavioral type describes a non-probabilistic response to a stimulus. Viewing
the couplet (d, y) as a joint response makes it clear that treatment received is an outcome,
not a covariate. Rosenbaum (2006) discusses this in his presentation of bivariate random
outcomes. Thus, a unique behavioral type is simply a unique function of z within the space
of all possible functions.

Now, let F be the space of all possible behavioral types, or functions f with domain Z
and range D×Y . There are |Z| possible values for z and for each z there are at most |D|×|Y|
possible values of (d, y) where || represents the number of elements in a set. Thus, there are
at most (|D| |Y|)|Z| possible functions f which make up F . If this number is large, we may
have difficulty estimating the fraction of behavioral types from a sample. This brings us to
our second definition which reduces the number of types to a more manageable amount.

Definition 4.1.2. A restriction is a limit on the possible range of the functions in F in the
context of a certain experiment.

A restriction reduces the set of possible behavioral types to a family F ′ where F ′ ⊆ F .
For example, the exclusion restriction of section 2.1.1 was a restriction of this type. As we
shall show in the next section, many of the assumptions of the last chapter can also be shown
to be restrictions as defined above. With just these two basic definitions, in the context of
the potential outcomes framework, one can arrive at a new perspective on an estimation
problem. To demonstrate the wide applicability of these concepts and insights they provide
to an estimation problem, we take a closer look at a few specific experimental protocols.

4.2 Examples

We now provide examples of three different experimental designs to show how the definitions
of behavioral types and restrictions are applied. In each case we describe how restrictions
apply, how this leads to a manageable number of behavioral types, and how these behavioral
types relate to the treatment effects of interest. We continue to limit ourselves to binary
outcome variables.

4.2.1 Experiments with a single treatment, with noncompliance
to treatment assignment

In Section 2.2 we showed the setting with a control group and one level of treatment, with
noncompliance, results in an estimation problem of five behavioral types. We now formalize
this using the above definitions.

Here the assignment, treatment received and outcome are all binary variables so Z =
D = Y = {0, 1}. Each of the two values for z has 22 possible values of f(z) = (d, y) so there
are a total of (22)2 = 16 members of F . These are shown in Figure 4.1 below.
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Figure 4.1: The 16 possible behavioral types in F with one level of treatment and noncom-
pliance.

We group each of the four compliance types introduced in Section 2.1 together. The the
compliers, where d(z) = z, are followed by the defiers with d(z) = 1− z. The alwaystakers
have d(z) = 1 and nevertakers are last with d(z) = 0.

We now see how assumptions 2, 3, 4 and 6 of chapter 2 act as restrictions leading to
five behavioral types in F ′. Assumption 2, the exlusion restriction, requires outcomes to
depend on treatment received rather than assignment, graphically, means that we cannot
have any functions with different values of y within the same column. This eliminates the
middle two behavioral types of the alwaystakers and nevertakers in Figure 4.1. Assumption
3, no defiers, rules out the defier types. Assumption 4, no alwaystakers, excludes the two
remaining alwaystakers. And finally, Assumption 6, monotonicity, removes the complier
behavioral type in the third column, which responds only when no treatment is received.
The five remaining behavioral types in F ′ are the comAR, comNR, comTR, nevAR, and
nevNR of section 2.2. We summarize this in Figure 4.2 below.
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Figure 4.2: How the assumptions of Section 2.1 and 2.2 are viewed as restrictions. The
labels indicate how each assumption eliminates certain behavioral types from Figure 4.1.

Section 2.2 lays out how the behavioral types appear in the observed control and treat-
ment data, how treatment effects of interest are thought of as proportions of the different
behavioral types and how they are estimated from the data. Again, this is a commonly
used design which has been used in a number of applications, particularly in estimating the
impact of get-out-the-vote campaigns.

4.2.2 k levels of ordered treatment, with unknown compliance

We now turn to experiments where subjects are assigned to a control group or to one of k
levels of ordered treatment in the sense that we know ahead of time which treatments are
more likely to lead to a positive response of the subjects. We begin by assuming compliance
to treatment is unknown (though it’s also applies for perfect compliance) and the effects we
estimate are attributed to assignment.



www.manaraa.com

69

Distinct Behavioral Types

Here Z = {0, 1, ..., k} where 0 denotes the control, 1 the weakest treatment and k the
strongest treatment. Since the range of f is Y = {0, 1}, F contains 2k+1 distinct behavioral
types. We reduce the number of behavioral types substantially with the restriction of mono-
tonicity introduced in section 2.2.3. As the range of f is only one variable, the outcome,
the assumption states that for any two treatments z1 and z2 such that z1 ≤ z2, we have
f(z1) ≤ f(z2). As we see in Figure 4.3 below, this restriction implies there are only k + 2
different behavioral types in F ′
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Figure 4.3: Unique behavioral types when treatment is ordered and we assume the Mono-
tonicity.

In this design, every behavioral type is associated with a threshold level of treatment
which must be met to trigger a response. The top row has the always responds and the
bottom row has the never responds similar to the behavioral types described in 2.2.

Sampling Model and Observed Data

For ease of exposition we demonstrate this with k = 3 though our description holds for an
arbitrary value of k.
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Let Z be {control, weak, medium, strong } z As before z = 0 denotes the control and
z = 1, 2, 3 correspond to the weak, medium and strong treatments, respectively. We have
five behavioral types. The A-responders always respond. B-responders respond if assigned
to any of the treatments but not to the control. C-responders respond only if assigned to
the medium or strong treatment. D-responders only respond to the strong treatment. And
F-responders never respond. As was discussed in section ??, we assume the subjects in the
sample are randomly assigned from a finite population. We can imagine data being generated
by what Freedman et al. (1998) call a box model with nA, nB, nC , nD and nF tickets for each
behavioral type such that nA + nB + nC + nD + nF = n. A ticket for each type resembles
the representations in Figure 4.3 with the value of the outcome for each of the treatment
assignments. Let q, r, s and t be the number of subjects assigned to the control and weak,
medium and strong treatments, respectively so that q + r + s + t = n. Returning to the
box model framework, we randomly draw from the box of tickets, without replacement, the
appropriate number of tickets assigned to each treatment level.

Let QA, QB, QC , QD and QF denote the random number of each behavioral type that
appear in the control group. Similarly, define RA, ..., RF for those assigned to the weak
treatment, SA, ..., SF for the medium treatment and TA, ..., TF for the strong treatment.
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The eight observed data points are

QA, those in the control who respond.
QBCDF ≡ QB +QC +QD +QF , those in the control who don’t respond.
RAB ≡ RA +RB, those in the weak treatment who respond.
RCDF ≡ RC +RD +RF , those in the weak treatment who don’t respond.
SABC ≡ SA + SB + SC , those in the medium treatment who respond.
SDF ≡ SD + SF , those in the medium treatment who don’t respond.
TABCD ≡ TA + TB + TC + TD, those in the strong treatment who respond.
TF , those in the strong treatment who don’t respond.

And the table of observed values is the following:

Weak Medium Strong
Control Treatment Treatment Treatment

No response QBCDF RCDF SDF TF

Responds QA RAB SABC TABCD

Total q r s t

Parameter Estimation

Since q, r, s and t are known by the experimental design, the model has four parameters
nA, nB, nC and nD or, more conveniently, pA = nA

n
, ..., pD = nD

n
(where pF = 1 − pA −

pB − pC − pD). Individually, each of QA, RAB, SABC and TABCD will follow hypergeometric
distributions with E(QA) = q pA, E(RAB) = r(pA+pB), etc. We have the following unbiased
estimates of the parameters:

p̂A =
QA

q

p̂B =
RAB

r
− p̂A

p̂C =
SABC

s
− p̂A − p̂B

p̂D =
TABCD

t
− p̂A − p̂B − p̂C

Treatment Effects

Using the attributable effects notation from Section 3.6, where treatment received is not
relevant, let wiz be potential outcome of the response of subject i if assigned to one of the
four treatments z. Again, Let Z denote the random value of treatment assignment so that
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the random response is Wi =
3∑

z=0

wiz1(Z = z). Then the effect of treatment z, beyond the

control, is

effectz ≡ E(W | Z = z)− E(W | Z = 0) =
1

n

n∑
i=1

wiz −
1

n

n∑
i=1

wi0

So the treatment effects of interest may be understood as the fractions of behavioral types
in the group of n subjects. That is,

• effect3 = pB + pC + pD, the increase in the response rate due to the strong treatment

• effect2 = pB + pC , the increase in the response rate due to the medium treatment

• effect1 = pB, the increase in the response rate due to the weak treatment, which is
also the marginal increase in the response rate from the control to the weak treatment

• pC is the marginal increase in the response rate from the weak to the medium treatment

• pD is the marginal increase in the response rate from the medium to the strong treat-
ment

Applications

This design is commonly used when the treatment(s) are received in the mail and treatment
received is not known, resulting in the measurement of intention-to-treat effects. Cotterill,
John, and Richardson (2010) conduct such an experiment with letters promising increasing
levels of rewards for participation in a book donation drive. And Gerber, Green, and Larimer
(2008), Sinclair, McConnell, and Green (2012) and Citrin, Green, and Levy (2014) study
the impacts of various mailers in GOTV campaigns. We examine the Gerber, Cotterill and
Sinclair experiments in Chapter 5.

4.2.3 GOTV experiment in households with two voters, allowing
for noncompliance

For our last example, we consider get-out-the-vote experiments consisting of households with
exactly two voters, who may or may not comply with the assigned treatment. Unlike the
first two examples, which are more general, we now describe a specific design motivated for
a real-world application. Though not as broadly applicable, we include this experimental
setup because it highlights a number of interesting features of using behavioral types such
as how restrictions whittle thousands of behavioral types to a workable amount and how
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complications may arise in parameter estimation. Also, as it turns out, this example yields
interpretations into interference or indirect, spill over effects, the ability of a treatment to
influence the outcomes of others who interact with the subject. This topic has recently re-
ceived considerable attention in the statistics literature (for recent reviews see VanderWeele,
Tchetgen, and Halloran, 2014; Aronow, Samii, et al., 2017).

Here, we assume the campaign employs only one form of outreach (e.g. an in-person visit)
and may try to reach either of the two voters with individual outreach efforts. While the
campaign views both voters in the same manner, we allow only one of the voters be a subject
in the experiment. From the point of view of a subject in the study, they may be assigned
to the control group or to one of three different ordered treatments. This is analogous
to example 4.2.2 so we use similar terminology. The strong treatment occurs when both
the subject and the other voter receive the outreach (we call this level of treatment both).
Under this treatment, the subject is encouraged to vote directly by the outreach, and also
indirectly if the attempt to contact the other voter in the household is successful. The
medium treatment corresponds with only the subject receiving the treatment themselves
which we denote self. And the weak treatment is when the outreach effort is only directed
at the other voter, so that any increase in voting turnout is due to interactions between the
two voters which we shall refer to as other.

In practice, an experimental design which designates only one of the two voters as part
of the experiment when the other is receiving treatments also, might seem uneconomical as
we are squandering half of the voters by keeping them outside of the experiment. In this
example we do this to meet the SUTVA assumption from Chapter 2.

Distinct Behavioral Types

As before, we begin with determining the size of F . The assigned treatments Z={control,
other, self, both}, ordered from least to greatest. The space of received treatments, D, is
the same as Z and Y is the voting outcome space of {0,1}. We may represent a behavioral
type with the following four-by-four array.

For each value of z, there are 4 × 2 = 8 possible values of f(z) = (d, y). With 4 values
of z there are 84 = 4096 possible distinct functions f , or distinct behavioral types in F .
Fortunately, there are four restrictions we may employ. These are similar to the assumptions
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found in section 4.2.1 but are extended to more levels of treatment. The first two restrictions
pertain to treatment received, d, while the last two limit the outcome values, y.

Restriction 1. A voter cannot receive a GOTV contact if the campaign does not attempt
to reach them.

This applies equally to the subjects and the other voters so that, for example, a subject
who is assigned self may only receive the self or control treatment depending on whether
the subject complies. Since the other voter is not be contacted there is no way for the
subject to receive both or other. Restriction 1 is similar to Assumptions 3 and 4 of Chapter
2 , there are no defiers or alwaystakers. In terms of our visual representation, it states that
certain values of d are not possible for f(z). We show the restriction below by crossing out
the columns of d that are no longer valid for each value of z.

With this restriction, for z = control the only possible values for (d,y) are (control,0) and
(control,1), or 2 possible values. Similarly for z = other or z = self there are 4 possible
values for (d,y) while for z = both there are 24 = 16 possible values. Thus the restriction has
reduced the total number of possible functions to 2× 4× 4× 16 = 512 different behavioral
types in F ′.

Restriction 2. Each voter within the same household complies with the assigned individual
treatment without regard to the assignment or treatment received of the other voter.

Let us first be clear that this should not be confused with SUTVA, as the “units” applies
to subjects which are, by our design, voters in different households. Also SUTVA addresses
outcome values while this restriction addresses compliance. But the restriction touches
upon a similar notion. Recall that campaigns, in this setting, conduct outreach directly to
the individual. This restriction states that whether we are referring to the subject or to
the other voter, whether one received the treatment does not rely on the outreach to or
treatment received of the second voter. Or, in math, the behavioral type function fi() for
voter i is only a function of zi and does not depend on the z, d, or y value for the second
voter.

Relating to the visual representation, once the value of d is known for the bottom row,
when z = both, we know the received value for all other rows. Because there are four possible
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receipt values to being assigned both there are four possible “compliance clusters” for the
behavioral types. For example, if a subject is assigned both, they receive the outreach while
the other voter does not comply, so the subject receives the treatment of self . This implies
that if assigned self , the subject complies with the outreach and the other voter is not
contacted so the subject again receives the treatment self . Along the same lines if assigned
other the subject receives control. Of course, if assigned control the subject receives control
by Restriction 1.

If d = both when z = both then both the subject and the other voter comply perfectly
with the individual outreach, so that d = z for all values of z. We call this cluster of
behavioral types perfect compliers. Their four-by-four array is:

If d = self when z = both this indicates the subject complies with the outreach but the
other voter does not and we refer to this cluster of behavioral types as self compliers, with
the following four-by-four representation.

If d = other when z = both, only the other voter complies with treatment and these other
compliers have arrays of this form.
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And nevertakers with d = control for every value of z have the simplest array structure,
with only one column available, as below.

As seen from the visual representation, we have completely determined the value of d, in
the output, (d, y), of f(). Each of the compliance clusters has 4 unfilled boxes which contain
a value for y, either 0 or 1. Therefore, each of the four compliance clusters has 24 = 16
possibilities for the range, or this restriction has reduced the number of behavioral types in
F ′ to 4× 16 = 64.

One noteworthy feature about Restriction 2 is that we can, to an extent, test the assump-
tion. Taking the subjects who are assigned both we can observe the fraction who are perfect
or self compliers as they are the subjects complying with the outreach, receiving treatments
of both or self . If Restriction 2 holds, this fraction should equal the fraction of perfect or
self compliers who are assigned to self with any difference between being due to chance. If
we observe a significant difference between the two fractions it implies that outreach to one
of the voters impacts the likelihood of the other voter in the household complying with the
outreach.

As mentioned earlier, the first two restrictions only limited the treatment received, d.
The next two restrictions are concerned with y. In fact, both are assumptions we have seen
before.

Restriction 3. The outcome, y, only depends on the treatment received, not the treatment
assigned.

This is the same as Assumption 2 in Chapter 2. As we have discussed, graphically, this
means that the values of y, within a column, must be the same. So perfect compliers with
four columns available to y still have 24 = 16 possible behavioral types. Self compliers and
other compliers, with only two columns open, each must have 22 = 4 possible behavioral
types. And nevertakers only have 1 column open to them which must be all 1’s or all 0‘s so
there are 2 types. This now gives a total of 16 + 4 + 4+ 2 = 26 possible behavioral types in
F ′.

Restriction 4. Monotonicity.

We use this in the same manner as described in section 4.2.2 to describe voters as A,B,C,D
or F voters where treatment now depends on what is actually received. A-voters always
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vote. B-voters vote under any of the three treatments, but not in control. C-voters vote
if they receive both or self but not if they receive other or control. D-voters only vote if
the receive both. F-voters never vote. Graphically, as we move from left to right a voting
response only occurs if d meets or exceeds a threshold. We see how this is realized for each
of the four compliance clusters.

For perfect compliers there are a total of 5 behavioral types, one for each A,B,C,D and
F voter: perfect complier A-voter (perfectA), perfect complier B-voter (perfectB), perfect
complier C-voter (perfectC), perfect complier D-voter (perfectD), and perfect complier F-
voter (perfectF ). These are shown below.

Self compliers only receive 2 of the possible assignments, self and control, so B-voters
act just like C-voters and D-voters act just like F-voters, resulting 3 distinct behavioral types
of voters which we call: self complier A-voter (selfA), self complier B or C-voter (selfBC),
and the self complier D or F-voter (selfDF ). Each representation is shown below.
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Other compliers, also only receive 2 of the possible assignments, other or control. In
this cluster, C, D and F-voters have identical behavior so there are 3 types of voters: other
complier A-voter (otherA), other complier, B-voter (otherB) and the other complier, C, D
or F-voter (otherCDF ). These are shown below.

Nevertakers, never receive any of the three treatments so consist of 2 types of voters: A
voters (neverA) , and B, C, D, F voters, which are indistinguishable from each other, form
their own behavioral type (neverBCDF ).

After beginning with thousands of possible functions in F , we have reduced F ′ to
just 5 + 3 + 3 + 2 = 13 behavioral types! This makes the estimation problem much more
manageable.

Finally, we emphasize the key idea that while the treatment received of the subject
does not depend on the other voter, the behavioral type for the subject is a function for the
treatment received of both the subject and the other voter in the household. This subtlety
may not be readily apparent but it should be clear from this discussion that it underlies how
we are able to conceptualize the behavioral types and restrictions in this setting with two
voters.

Sampling Model and Observed Data

Similar to the example from 4.2.2 we have a model represented with n total tickets with a
certain number belonging to of each of 13 distinct behavioral types. As in 4.2.2 there are 4
possible assignments. The number drawn to the control, other, self and both are fixed in
advance as q, r, s and t, respectively such that q+ r+ s+ t = n. We show this in Figure 4.4.
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Figure 4.4: Sampling model for GOTV experiment with two-voter households allowing for
noncompliance.

As we can observe how each subject complies with the assigned treatment, observed
data appears as an extension of the table shown in section 2.2. The treatment received
possibilities depend on the treatment assignment so that self and other treatments only
have two possible received treatments while the both assignment has all the possible received
treatments. Staying with the notation of 4.2.2 we let the Qyd represent the random total
of observations of the subjects assigned to the control who respond with voting value y and
receive treatment d, Ryd for those assigned to the other treatment, Syd for self and Tyd for
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both. The observed results appear as this two by nine table.

Treat Assigned Control Other Self Both

Treat Received Control Control Other Control Self Control Other Self Both

Didn’t Vote Q0 control R0 control R0 other S0 control S0 self T0 control T0 other T0 self T0 both

Voted Q1 control R1 control R1 other S1 control S1 self T1 control T1 other T1 self T1 both

Total q r s t

And we can now place the 13 behavioral types according to which cell they appear in the
table of observed data.

Treat Assigned Control Other Self Both

Treat Received Control Control Other Control Self Control Other Self Both

Didn’t Vote perfect
F

perfect
F

perfect
F

perfect
F

self
DF

self
DF

self
DF

self
DF

other
CDF

other
CDF

other
CDF

other
CDF

never
BCDF

never
BCDF

never
BCDF

never
BCDF

perfect
D

perfect
D

perfect
D

perfect
C

perfect
C

self
BC

self
BC

perfect
B

other
B

Voted perfect
D

perfect
C

perfect
C

self
BC

self
BC

perfect
B

perfect
B

perfect
B

other
B

other
B

other
B

perfect
A

perfect
A

perfect
A

perfect
A

self
A

self
A

self
A

self
A

other
A

other
A

other
A

other
A

never
A

never
A

never
A

never
A

Parameter Estimation

The assignment totals q, r, s and t are fixed, so the table of observed results has 1 degree of
freedom for the subjects assigned to control, 3 degrees of freedom each for those assigned to
other and self and 7 degrees of freedom for those assigned to both. The 1 + 3 + 3 + 7 = 14
degrees of freedom for the 12 unknown parameters leads to an overdetermined system of
linear equations. This allows for multiple estimators of the same parameter, which may be
combined to reduce variance. In this section we do not delve into choosing optimal estimators
but simply show the parameters can indeed be determined from the observations.
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We begin with the five behavioral types which appear exclusively in their own cells of
the observed data.

p̂perfect
F
= T0 both/t

p̂self
DF

= T0 self/t

p̂other
CDF

= T0 other/t

p̂never
BCDF

= T0 control/t

p̂never
A
= T1 control/t

We build on these immediate estimates with

p̂perfect
D
= S0 self/s− p̂perfect

F
− p̂self

DF

and use successive estimates in the equations for the remaining parameters such as the
following.

p̂perfect
C
= R0 other/r − p̂perfect

D
− p̂other

CDF
− p̂perfect

F

p̂self
BC

= R0 control/r − p̂never
BCDF

− p̂self
DF

p̂self
A
= T1 self/t− p̂self

BC

For the last estimate we could also use p̂self
A
= R1 control/r− p̂never

A
or some combination

of the two. As the linear equations are overdetermined, the final four parameters may be
solved by a number of different systems of linear equations such as

p̂perfect
B
+ p̂other

B
+ p̂perfect

A
+ p̂other

A
= R0 control/r

p̂perfect
B

+ p̂perfect
A

= T1 both/t− p̂perfect
D
− p̂perfect

C

p̂perfect
A
+ p̂other

A
= Q1 control/q − p̂self

A
− p̂never

A

p̂perfect
B
+ p̂other

B
= Q0 control/q − p̂self

BC
− p̂perfect

C
− ...− p̂perfect

F

where the quantities on the right hand side of the equations are observations from the data
or parameter estimates that have already been solved.

Spillover Treatment Effects

There are numerous treatment effects which we could estimate, including att and itt for
each of the three levels of treatment. Just as statisticians, political scientists have also
shown interest in spillover effects, or, in the context of GOTV experiments, the impact of
turn out on the subject, when the other voter is contacted. See Sinclair, Rogowski, Bass,
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Harrington, et al. (2011) for an overview of the GOTV research. By our definitions, the
perfect

B
and other

B
behavioral types turn out to vote when only the other voter in the

household is called. Thus, for the experimental sample we have

ittspillover =
nperfect

B
+ nother

B

n
.

As the perfect compliers and self compliers are the subjects who receive the treatment we
may also estimate the att for the indirect treatment as

attspillover =
nperfect

B
+ nother

B

nperfect complier + nself complier

.

Applications

We know of no applications of this specific experimental design. However, as mentioned
earlier, this example is motivated by the possibility of carrying out such an experiment,
based on the authors work with modest sized GOTV drives. In such campaigns, when the
outreach capabilities are limited, campaign workers may only be able to attempt contact
with a fraction of the targeted voters. The design of this example requires that a large
portion of the voting population not be contacted and thus may be a useful experiment for
campaigns with limited resources that are interested in measuring spillover effects.

4.3 Discussion

In this chapter, we provide precise definitions for the terms behavioral type and restriction
which may be applied to any experiment where the possible treatment assigned, the possible
treatments received, and the responses are all categorical. We show that while the initial
number of distinct behavioral types may be large, the restrictions can provide enough limi-
tations to the treatment received and response variables to reduce the number of types to an
estimable amount. Through three illustrative examples we show how the model parameters,
and the proportion of the behavioral types in the experimental sample, may be identified
from the contingency table summarizing the observed results. For each of the three designs
we demonstrate how commonly measured treatment effects for many experiments with bi-
nary outcomes may be expressed as functions of the proportion of behavioral types. For
the remainder of this thesis we concern ourselves with inference about these proportions via
testing, confidence intervals, and multi-parameter confidence regions.
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Applications for Single Parameter
Inference

In this chapter we apply the behavioral-types approach to four social science field experi-
ments with multiple degrees of treatment. We begin with an experiment that follows the
example in Section 4.2.2, having k degrees of ordered treatment and unknown compliance,
which leads to fairly unambiguous findings. We follow this with another experiment in the
mold of example 4.2.2 but the conclusions we draw are slightly different from those of the
authors. In our third application we tackle a more complicated design and our approach
yields much stronger evidence of a spillover treatment effect. The fourth application is a re-
cent experiment tracking compliance and though we don’t have the data in hand, we outline
how it might be evaluated. The experiment also differs from the first three as the treatments
are partially ordered, departing from the restriction of strict monotonicity. For each appli-
cation we describe the experimental design with an overview of the author’s methods and
conclusions. We then conduct our own analysis from the point of view of behavioral types
and compare the results. The fifth section summarizes our general approach and also high-
lights the nuances specific to each application. We postpone most of the detailed variance
calculations until the sixth section. In this chapter we only concern ourselves with single
parameter inference. We discuss confidence regions for multi-parameter inference in Chapter
6.

5.1 Social Pressure and Voter Turnout: Evidence

from a Large-Scale Field Experiment

Motivated to understand how social pressure can increase voter participation, Gerber et al.
(2008) design a series of four GOTV postcards which progressively escalate the degree of
social pressure exerted to encourage voting. The mildest of the treatments begins “DO
YOUR CIVIC DUTY–VOTE” and contains a short message appealing to the voters sense

84
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of social obligation. The same sentence is also repeated in the three other types of mail-
ers. The pressure increases in the second type of postcard which emphasizes “YOU ARE
BEING STUDIED!”, noting that researchers will be monitoring voter’s participation via
public records (the authors refer to this as the “Hawthorne” treatment). The “Self” treat-
ment includes a similar message about voters being studied but leads with “WHO VOTES
IS PUBLIC INFORMATION ” and boosts the social pressure by printing the names of each
of the voters within the household and whether they had voted in the prior two elections,
including an empty box for the upcoming election, which the researchers claim they will
fill in and resend after votes have been tallied. The strongest pressure is exerted by the
“Neighbors” treatment which spurs voters with “WHAT IF YOUR NEIGHBORS KNEW
WHETHER YOU VOTED?” and lists the voting history of the household members followed
by the voting history of their neighbors, again with a blank box for the upcoming election
and a promise to send an updated mailing. That is, hinting that one’s neighbors will learn
whether they voted. The overlapping nature of the messaging, keeping elements of weaker
treatments in the stronger treatments, is in accord with an ordered series of treatments and
supports the monotonicity assumption that a voter motivated to vote by a weaker treatment
is also motivated by the stronger ones.

The study was conducted in Michigan prior to the August 2006 primary, where most elec-
toral activity focused on two key races to decide the Republican nominees for state governor
and a United States senator. Researchers removed individuals from the subject pool who
were unlikely to be impacted by the treatments, such as those with bad addresses, likely
Democratic registrants and those who did not vote in the high turnout November 2004 elec-
tion. Additionally, subjects were grouped into blocks of 18 neighboring households where,
within each, 10 were assigned to control and two were assigned to each of the four treat-
ments. Certain households were removed that did not fit into the design, such as those in
sparsely populated areas where voters may not know their neighbors, or all those in apart-
ment buildings as neighboring households could not be clearly identified. The resulting
sample contained approximately 100,000 households in the control group and 20,000 in each
of the four treatment groups. In total 180,002 households representing 344,084 voters were
included in the study.

Analysis and Conclusions by Experimenters

We argue, shortly, that in order to apply the behavioral-types approach directly, it is nec-
essary to restrict ourselves to single voter households. However, for comparison, we begin
with the author’s analysis for voters in all households. Here are the main observations of
the experiment.
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Experimental Group

Civic Being Studied Self Neighbors

Control Duty (Hawthorne) Vote History Vote History

Percentage Voting 29.7% 31.5% 32.2% 34.5% 37.8%

Number of Individuals 191,243 38,218 38,204 38,218 38,201

Table 5.1: Voting rates of the control and four postcard treatments in the Social Pressure
experiment.

Table 5.1 indicates that each of the treatments correspond with a higher rate of voting than
the control, and perhaps even a significant difference from each other. In order to estimate
the effects of the mailers, the authors perform a linear regression with an indicator of voting
as the response variable and the assigned treatment as the independent variable of interest.
They specify three separate models two of which employ covariates of prior voting history
and block identifiers to check the robustness of the treatment assignment estimates. Though
the analysis is performed at the individual level, most subjects live in households with more
than one voter. Gerber, Green and Larimer account for the dependency by using clustered
standard errors, with each household as a cluster. Table 5.2 contains the results of their
analysis. The first row shows the estimates from direct calculation of the observations, i.e.,
subtracting the voting rate of the treatment minus that of the control. The second and third
row show the linear regression estimates and standard errors using the specification without
covariates. The results are nearly identical when the covariates are included.

Treatment

Civic Being Studied Self Neighbors

Duty (Hawthorne) Vote History Vote History

Effects, Direct Calculation 1.8% 2.5% 4.8% 8.1%

Effects, Linear Regression 1.8% 2.6% 4.9% 8.1%

SE, Linear Regression 0.3% 0.3% 0.3% 0.3%

Table 5.2: Effects estimated from Social Pressure experiment.

The author’s conclude, with strong evidence, that each of the effects are not only significantly
different from zero but also large enough in magnitude to be a cost effective method for
getting out the vote.

Replicating Experimenters Results for One-voter Households

As we saw from example 4.2.2, modeling under the potential outcomes framework becomes
more elaborate when there are two or more voters within the same household, as the outcome
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of one voter may depend on the treatment assignment of another. For now, we avoid this
complication entirely by limiting our analysis to households with only one voter (in Section
5.3 we tackle the issue directly by addressing the spillover effect between voters from the
same household). The individual level data of the subjects, analysis code, and other docu-
mentation relevant to the experiment are available in the Data Archive of Yale University’s
Institution for Social and Policy Studies which houses the data for many recent Get Out
The Vote field experiments published in the literature. We simply drop the subjects from
multi-voter households from the records and repeat the authors’ analysis using their code.
The luxury of such a large sample size, which still includes 47,836 single-voter households,
allows us to do this and still retain meaningful findings. Table 5.3, below, shows the voting
rates of single voter households under the different treatments.

Experimental Group

Civic Being Studied Self Neighbors

Control Duty (Hawthorne) Vote History Vote History

Percentage Voting 33.1% 35.4% 37.0% 40.0% 42.3%

Number of Individuals 26,481 5,398 5,281 5,310 5,364

Table 5.3: Voting rates for those in households with only one voter.

Comparing Tables 5.1 and 5.3 we see a similar pattern of substantial increases in voter
turnout accompanying the increased degree of social pressure. Subjects in one-voter house-
holds appear to vote at rates 3 to 5 percentage points higher than that of the overall sample,
perhaps due to characteristics of one-voter households which correlate with a higher ten-
dency to vote. The estimated effects are also stronger, which is seen more clearly when we
repeat the regression analysis in Table 5.4 below. The overall treatment effects are higher
than what was observed in Table 5.2 but with the smaller sample size, the standard errors
are much larger. Our next task is to reproduce Table 5.4 from the perspective of behavioral
types.

Analysis with Behavioral Types for One-voter Households

We now follow the blueprint laid out in Example 4.2.2 when there are k treatments of or-
dered intensity with unknown compliance. Here we have a control group and k = 4 ordered
treatments. Given the messaging of the mailers, the assumption of monotonicity seems rea-
sonable. That is, there are k + 2 = 6 distinct behavioral types, which we refer to as A, B,
C, D, E and F-voters. Their voting outcomes are shown in Table 5.5.
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Treatment

Civic Being Studied Self Neighbors

Duty (Hawthorne) Vote History Vote History

Effects, Direct Calculation 2.32% 3.92% 6.92% 9.20%

Effects, Linear Regression 2.32% 3.92% 6.91% 9.20%

SE, linear regression 0.71% 0.72% 0.72% 0.72%

Table 5.4: Effects estimated from Social Pressure experiment, restricted to households with
one voter.

Treatment Votes Doesn’t Vote

Control A-voters B,C,D,E,F-voters

Civic Duty A,B-voters C,D,E,F-voters

Being Studied A,B,C-voters D,E,F-voters

Self Vote History A,B,C,D-voters E,F-voters

Neighbors Vote History A,B,C,D,E-voters F-voters

Table 5.5: Response of behavioral types in the Social Pressure experiment.

Still within the framework of 4.2.2 the effects from the first two rows of Table 5.4 are the
sample percentages of certain behavioral types. The estimate of the “Civic Duty” effect
is the estimated percentage of B-voters (p̂B), while the estimated “Neighbors” effect is the
percentage of B, C, D and E-voters (p̂B + p̂C + p̂D + p̂E). The parameters are estimated
as described in 4.2.2 and shown in Table 5.6. Their standard errors result from a variance
calculation similar to that of Section 3.2, the details of which are found at the end of the
chapter in Section 5.6.

Parameter pA pB pC pD pE pF

Estimate 33.06% 2.32% 1.60% 3.0% 2.28% 57.74%

SE 0.19% 0.67% 0.90% 0.92% 0.92% 0.64%

Table 5.6: Parameter estimates when applying the behavioral-types approach to one-voter
households in the Social Pressure experiment.

As was described in the example from Section 4.2.2, within each treatment group the total
number of votes follows a hypergeometric distribution, with a covariance structure across
the treatment groups. Here, the finite population size is 47,836 and the number of draws, the
number within each treatment, is at least 5,000. Though the distribution is discrete, with
the observed response rates in Table 5.3 between 33%–43%, and more than 1,000 counts in
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each cell of the contingency table of treatment and outcomes, the observed total votes is well
approximated by a multivariate normal distribution, as are the parameter estimates which
are linear combinations of the observed totals. Table 5.6 indicates that, with the exception
of p̂C , the parameter estimates are highly significant. Table 5.7 gives the estimates of the
treatment effects using the behavioral-types approach. These are comparable to the second
and third line of Table 5.4, with slightly smaller standard errors.

Treatment

Civic Being Studied Self Neighbors

Duty (Hawthorne) Vote History Vote History

Effects, Behavioral Types 2.32% 3.92% 6.92% 9.20%

SE, Behavioral Types 0.68% 0.69% 0.69% 0.69%

Table 5.7: Effects estimated from Social Pressure experiment, restricted to households with
1 voter.

In summary, our analysis matches well to that of Gerber, Green and Larimer, indicating
substantial and highly significant findings but with a different perspective on whether the
measurement is of a treatment effect or a percentage of behavioral types in the sample. The
conclusions are quite strong in this experiment due to the differences in the response rates
to the different treatments. The remaining applications exhibit how the behavioral-types
approach compares when the results are more ambiguous.

5.2 The Impact of a Pledge Request and the Promise

of Publicity: A Randomized Controlled Trial of

Charitable Donations

In this application Cotterill, John, and Richardson (2013) examine how making a commit-
ment of a charitable donation and having that act recognized publicly, impacts the likelihood
a household donates. Asking households to make a pledge is a tactic commonly used by char-
itable or civic engagement organizations to encourage donations or engage in civic action,
and as found in the Social Pressure experiment, publicly recognizing acts deemed as benefi-
cial to one’s community can strongly influence behavior.

Set in the town of Manchester, United Kingdom, investigators collaborated with a local
charity collecting books for school libraries in South Africa during a week-long book dona-
tion drive in 2010. The treatment assignments consist of a control and two treatments to
examine different sorts of enticement. The control group received an initial letter informing
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them of the book drive and asking for donations. The “Pledge” group received the same
letter with an additional sentence “Please pledge to donate a second hand book (by postcard,
email or phone)” and also included an addressed pledge postcard for the subjects to return.
The letter in the stronger treatment,“Pledge and Publicity”, began with a letter identical to
that of the “Pledge” treatment, with the same pledge card, but tacked on one more sentence
“A list of everyone who donates a book will be displayed locally.” For all subjects, a follow-up
letter was sent four weeks later reminding them of the book collection and indicating the
drop off locations. As with the initial letter, the follow up letter for the “Pledge” group con-
tained an additional request for a pledge, while the “Pledge and Publicity” group added a
final message promising to publish the names of those who donate. Additionally, households
who made a pledge were thanked, and reminded of their commitment. Thus, the complete
treatment effect is due to both letters, with the content of the second letter conditional on
the response to the first letter. The second mailing also included a plastic bag to use for
donated books. Each bag contained a unique identifier number allowing the researchers to
track who had given.

To compile a list of subject households, researchers identified all residential addresses in
two electoral wards one of which was relatively poor while the other was relatively wealthy.
Households were approximately split between the two wards. The 11,812 households chosen
for the study were then randomly divided into three nearly equal treatment assignments
with 3,937 to control, 3,937 to “Pledge” and 3,938 to “Pledge and Publicity”. In the second
mailing, residents were informed of six locations, three in each ward, where books could
be dropped off. Books left without a book bag or any other identifier were recorded as an
anonymous donation.

Analysis and Conclusions by Experimenters

The main observations of the experiment are shown below, copied from Table 2 of the article.

Experimental Group

Pledge and

Control Pledge Publicity

Percentage Donating 7.3% 8.2% 8.9%

Standard Error 0.42% 0.44% 0.45%

Number of Individuals 3,937 3,937 3,938

Table 5.8: Effects estimated from Cotterill et al. experiment.

The first row shows the response rate increases monotonically with the strength of the treat-
ment. Though not stated explicitly, standard errors are in line with a sampling model where
subjects are chosen from an infinite population so that the number of donations in each of
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the three groups are deemed as independent. The authors begin their analysis by conducting
two-tailed z-tests and conclude that the “Pledge” group does not differ significantly from the
control (p-value over .05) while the “Pledge and Publicity” group does (p-value below .05).
In order to control for various demographic variables between neighborhoods, such as age
and income distribution, the authors perform a complementary log-log regression, a form of
binary regression with link function such that Pr(donate) = 1−exp[− exp(

∑p
j=1 xjηj)] where

ηj represents the coefficients of the covariates xj. Descriptions of the model can be found
in (McCullagh and Nelder, 1989, p. 108). The regression analysis supports the findings that
the “Pledge and Publicity” treatment has a significant effect, with p-value below .05, while
the pledge only group does not.

Analysis with Behavioral Types

As with the single voter households in the Social Pressure experiment, we proceed along the
lines of Example 4.2.2 with a control group and k = 2 degrees of ordered treatment. Given
the layered arrangement of the letters, the assumption of monotonicity seems reasonable.
There are k + 2 = 4 distinct behavioral types which we refer to as A, B, C and F-donors.
Their donation outcomes follow this scheme.

Treatment Donates Doesn’t Donate

Control A-donors B,C,F-donors

Pledge A,B-donors C,F-donors

Pledge and Publicity A,B,C-donors F-donors

In this setting, the donation rates of Table 5.8 are the sample percentages of certain behav-
ioral types. The “Pledge” effect is the percentage of B-donors (pB), while the “Pledge and
Publicity” effect is the percentage of B and C-donors (pB + pC). The parameters and effects
are shown in Table 5.9 and the calculation of the standard error is again postponed to the
end of this chapter.

Parameter pA pB pC pF pB + pC

(Effect) (Pledge) (Pledge and Publicity)

Estimate 7.3% 0.9% 0.7% 91.9% 1.6%

SE 0.34% 0.55% 0.57% 0.37% 0.56%

Table 5.9: Parameter estimates when applying the behavioral-types approach to the Cotterill
et al. experiment. The treatment effect of the “Pledge” is pB while the effect of “Pledge
and Publicity” is pB + pC .

Here, neither of the estimates for the main parameters of interest, p̂B and p̂C , are significantly
different from zero but their sum, p̂B + p̂C certainly appears to be so. Assuming normality,
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a null hypothesis claiming the “Pledge and publicity” effect is zero would be rejected with
a p-value of 0.002, which appears to be a much stronger conclusion than those found by
the authors of the study (though part of the difference may be due to the assumption of
dependency among the treatment groups). However, employing these point estimates and
standard errors does not necessarily yield an accurately sized confidence region. In Chapter
6 we discuss how, when parameter values are close to zero, as they are here, confidence
regions and p-values computed from these standard errors may be somewhat too small.

As an alternative, we test that hypothesis that pB = pC = 0 with the Fisher Exact test. If we
combine the results for the two treatments, under the null, there are only A and F-donors;
one type donates and the other does not, regardless of assignment. Any difference observed
in the rate of donating between the control and combined treatments is due to the random
allocation of the two behavioral types to the treatment groups. Under the null hypothesis,
the number donating in the control will follow a hypergeometric distribution. The exact
test results in a p-value of 0.018, substantial evidence against the null. Overall, we agree
with the authors, that the effect of the “Pledge and Publicity” is significant. But from the
perspective of behavioral types the conclusion is more nuanced: there is strong evidence that
either B or C-donors exist, but it’s not clear if both or just one of the two is found in the
sample.

5.3 Detecting Spillover Effects: Design and Analysis

of Multilevel Experiments

Motivated to understand how spillover effects impact voter turnout, Sinclair et al. (2012) de-
sign an elaborate GOTV mailer experiment to explore how voters within the same household,
or residing on the same block, influence each other. Unlike the previous two experiments we
explored, where treatment was assigned to a household, here treatment is assigned at the
individual level by directly addressing one voter in a household. The authors mail the “Self”
treatment from the Social Pressure experiment, which begins with “WHO VOTES IS PUB-
LIC INFORMATION ” with only the name and vote history of the addressee. Treatment
assignments are randomized at three different levels. First, nine-digit zip codes are assigned
to one of four groups: control, one household in zip mailed, half of households mailed, or all
of households mailed. Second, the appropriate number of households within each zip code
are assigned to receive the mailer. Third, in households with more than one voter, one is
randomly selected to be the addressee.

We will describe the exact assignment procedure in more detail below but first we estab-
lish the treatments effects which can be estimated from the various treatment assignments.
From the perspective of an individual subject in the study, they can be assigned to one of
the following nine possible experimental conditions.
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1. Control, with no mailings sent to anyone in their zip code

2. One household in zip mailed, not to the subject’s household

3. One household in zip mailed, sent to other voter in subject’s household

4. One household in zip mailed, sent to the subject

5. Half of households in zip mailed, not to the subject’s household.

6. Half of households in zip mailed, sent to other voter in subject’s household

7. Half of households in zip mailed, sent to the subject

8. All of households in zip mailed, sent to other voter in subject’s household

9. All of households in zip mailed, sent to the subject

By design, individuals in single-voter households cannot be assigned to the third, sixth or
eight treatment. For our purposes, we argue that this order represents a series of ordered
treatments, the higher numbered corresponding with the stronger treatments.

The design allows us to measure a number of treatment effects. For example, the spillover
effect between voters in the same household, conditional on no neighbors mailed, is found
by subtracting the voting rate of those in assignment 1 from those in assignment 3. Simi-
larly, subtracting the response rate of those assigned to treatment 5 from those assigned to
treatment 6 also provides a within-household spillover effect, but in the context of half of
one’s neighbors receiving the mailing. And the spillover effect from half of one’s neighbors
receiving the mailing is found by subtracting the voting rate of group 1 from group 5.

Sinclair et al. apply this design to a GOTV outreach during the April 2009 special elec-
tion in the Illinois 5th Congressional District. The previous elected official, Rahm Emanuel,
had resigned to become the White House Chief of Staff and few resources were invested in
the campaign by any political party as a lopsided Democratic victory was anticipated. The
non-competitive nature of the race made it an attractive setting for an empirical applica-
tion as voting outcomes were unlikely to be obscured by other forms of campaign outreach.
Eligible voters for the study were those who had registered before 2006. Eligible households
consisted of those with between one and three eligible voters. And eligible zip codes needed
to have at least two eligible two-voter households. In total, there were 71,127 eligible indi-
viduals, 47,851 eligible households and 4,897 eligible zip codes.

The assignment to treatment group proceeded as follows. First, a two-voter household
from each zip code was chosen at random to be what was called the core household. Then
one quarter of zip codes were assigned to a one-mailer zip code, one quarter of zips to half of
households treated, one quarter to all households treated and one quarter were assigned to
control where no households were sent the mailer. Next, the appropriate number of houses
in the zip code were randomly selected to receive the postcard. Core households not assigned
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to control were always sent the mailer so in zip codes assigned to the 1-mailer treatment,
the core household is the lone one treated. In zip codes where half the households receive
the mailer, half of the non-core households received the mailer. If the number of non-core
households was odd, the number receiving treatment was rounded down (so in zip codes
with seven or eight households the core and three non-core households, or four in all, are
treated). Finally, one voter within the house was selected as the subject. The procedure for
assignment to treatment is summarized in Figure 5.1.

Figure 5.1: Randomization to treatment procedure in Sinclair et al. experiment.

After the election, public records were used to track the voting outcomes. The authors
were able to determine the responses of 64,445 of the subjects, about 90%, of the original
sample.
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Analysis and Conclusions by Experimenters

The authors complete three separate analyses for the one, two and three-voter households.
We focus on just the two-voter households which, as we shall soon demonstrate, have a
sample sufficiently large enough to yield interesting results when viewed from the perspective
of behavioral types. For the two-voter households, Sinclair et al. use the linear regression
model

Yi = α + β1(Mailed Directly)i + γ1(Mailed to Other Voter in Household)i

+ δ11(1 Other HH, Not Sent to Subject)i + δ21(Half HH)i + δ31(All HH)i

+ ϵ1(Core HH)i +
m∑
j=1

ζj1(Zip Configuration j)i + ui (5.1)

where the first five indicator covariates jointly provide an economical representation of the
nine separate treatments. For example, the second treatment, where one household in the
zip code is mailed, not addressed to the subject’s household would have

1(1 Other HH, Not Sent to Subject) = 1

with the other four treatment indicators set to 0 while the fourth treatment, where one
household in the zip code is mailed, addressed to the subject would have

1(Mailed Directly) = 1

with the other four treatment indicators set to 0. The binary variable for core household was
included to account for the core and non-core assigned to treatment with different probabil-
ities. The 1(Zip Configuration 1), ...,1(Zip Configuration m) represent m possible zip code
configurations. Each configuration j represents one of the m possible configurations of the
number one, two and three-voter households in the zip code. For example, all individuals
living in zip codes with exactly four one-voter households, five two-voter households and one
three-voter household would have the same values for 1(Zip Configuration 1), ...,1(Zip Configuration m).
This controls for the impact of different household sizes as one could imagine zips with just
a few households could have a different tendency to vote than ones with many households.
And as we saw in Section 5.1 when we restricted ourselves to single voter households, voting
rates do vary by household size. The coefficients ζ1, ..., ζm represent a control for each config-
uration. There were nearly 300 unique configurations. Additionally, the authors duplicate
the model with and without indicator variables of individual turnout for the 2008, 2006,
2004, 2002 and 2000 November elections.

The authors arrive at the following estimates for treatment and spillover effects. We show
the estimates without the controls for vote history which, as we have seen in the two previous
applications, has little change on the estimated coefficients.
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Treatment Estimate 95% Confidence Interval

Mailed Directly (β) 3.6% (1.9%, 5.2%)

Mailed to Other Voter in Household (γ) 1.2% (-0.5%, 3.0%)

Mailed to One Other Household in Zip (δ1) 0.5% (-1.6%, 2.8%)

Mailed to Half of Households in Zip (δ2) 0.6% (-1.3%, 2.6%)

Mailed to All Households in Zip (δ3) 1.0% (-1.2%, 3.0%)

Table 5.10: Regression estimates of treatment and spillover effects in the Sinclair et al.
experiment for two-voter households.

Table 5.10 indicates strong evidence for a direct impact of being sent the postcard, near
significant evidence for a within-household spillover effect and little evidence for spillover
from neighbors. Confidence intervals were computed via a bootstrap. The authors conclude
a strong significant direct effect confirms the Social Pressure experiment’s findings of the
impact of the “Self” mailer and that there is just below significant evidence of a within-
household indirect effect. We focus on the within-household spillover effect and show that
a behavioral-types approach, while it does not provide a confidence interval, can employ
hypothesis testing to provide even stronger evidence of the indirect spillover effect.

Analysis with Behavioral Types

We begin by showing the different behavioral types. Again our primary interest lies in
the spillover effect. First, for simplicity, and to increase power, we group all subjects in
households that were not mailed a postcard to form the “Not mailed to house” treatment
group. Thus we disregard any effects that may arise due to one, half, or all of neighbors being
mailed and consider only three ordered treatments: “Not Mailed to Household”, “Mailed to
Other Voter in Household” and “Mailed Directly”. Assuming monotonicity, we can again
follow the blueprint of Example 4.2.2, which gives rise to four behavioral types of voters: A,
B, C and F-voters. Their voting outcomes are as follows.

Treatment Votes Doesn’t Vote

Not Mailed to Household A-voters B,C,F-voters

Mailed to Other Voter in Household A,B-voters C,F-voters

Mailed Directly A,B,C-voters F-voters

Here, the percent of B-voters represents the within household spillover effect. As with the
Social Pressure experiment, the individual level data is available from the Data Archive
of Yale University’s Institution for Social and Policy Studies which we use to calculate the
voting rates for our aggregated treatment groups. Due to the complex randomization process
we omit standard errors, for now but show the voting rates in Table 5.11.
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Experimental Group

Not Mailed Mailed to Other Mailed

to Household Voter in House Directly

Percentage Voting 22.8% 24.4% 26.7%

Number of Individuals 15,632 7,194 7,268

Table 5.11: Response rates for the aggregated treatment groups for two-voter households.

This leads to the following parameter estimates in Table 5.12.

Parameter pA pB pC pF

Estimate 22.8% 1.6% 2.3% 73.3%

Table 5.12: Parameter estimates for aggregated treatment groups for two-voter households.

In terms of the treatment effects, the impact of the Mailed Directly treatment is the percent
of B and C-voters, or β of Equation 5.1 is comparable to pB + pC . Comparing to the esti-
mated treatment effects of Table 5.10, the linear model yields β̂ = 3.6% while our approach
gives p̂B + p̂C = 3.9%. Continuing the comparison of treatment effects, the spillover effect in
Table 5.10 of γ̂ = 1.2%, is the percent of B-voters, and Table 5.12 puts this slightly higher at
1.6%. Computing the standard errors, however, is not as straightforward as in the first two
examples of the chapter. First, individuals receiving the “Mailed Directly” and “Mailed to
Other Voter in Household” treatments live in the same address which violates the SUTVA
(which was the motivation for restricting our analysis to one voter households in the Social
Pressure experiment).

In fact, a closer look at the random quantities involved in the calculation of p̂B brings
to light the complications in computing a standard error for p̂B. To see this more clearly
we represent Table 5.11 in terms of the random totals appearing in a contingency table of
results. We use the notation of Example 4.2.2 where the subjects who vote under the “Not
Mailed to Household” treatment, the A-voters, are denoted by QA. The total who don’t
vote if assigned this treatment, the B, C and F voters are QBCF . Similarly, the voters and
non-voters assigned to “Mailed to Other Voter in Household” will be RAB and RCF , respec-
tively. In the “Mailed Directly” treatment we observe SABC voters and SF non-voters. The
contingency table of counts by treatment and voting outcome appears as Table 5.13 where
Q, R and S are now random quantities that depend on the zip code level assignment and
the configuration of household sizes on the block. We estimate the percent of B-voters, the
statistic of interest, with

p̂B =
RAB

R
− QA

Q
.
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Experimental Group

Not Mailed Mailed to Other Mailed

to Household Voter in House Directly

Didn’t Vote QBCF RCF SF

Voted QA RAB SABC

Total Q R S

Table 5.13: Random variables within the contingency table of counts by treatment and
voting outcomes.

but the covariance of RAB/R and QA/Q is much harder to evaluate, as each house receiving
the mailer has two voters with dependent outcomes. To fully proceed with the calculation of
standard errors, and incorporate this dependency between the two voters of the household,
we cannot view the behavioral types from the perspective of an individual, we must view
them as a particular type of household consisting of a pair of voters. Each household behav-
ioral type depends on the outcomes of the two voters. For example, we denote a household
behavioral type as AC if it consists of one A-voter and one C-voter, the order of the pair
is irrelevant. Thus there are 10 possible unordered pairs or 10 unique household behavioral
types: AA, AB, AC, AF , BB, BC, BF , CC, CF and FF . Finding the proportion of each,
pAA, ..., pFF , is the estimation goal.

If we were to follow the procedure of the first two applications, once the proportions of
household behavioral types is known, this can be combined with the sampling design to
solve the covariance structure of (QA, QBCF , RAB, RCF , SABC , SF ) to determine the variance
of p̂B. Here, however, we encounter an identifiability issue as there are nine parameters
(since the proportion of each of the 10 behavioral types must sum to 1) but, it can be
shown, there are only seven possible estimating equations. The authors do not encounter
this identifiability problem as the direct impact of a mailer, or the spillover effect from the
other in the household are viewed as additive effects of a linear model. Complicating the
calculation of the variance even more, because of the randomizing scheme, assignment is not
analogous to pulling households randomly from an infinite or finite population. Assignment
is intertwined with the household configuration of each nine-digit zip code as, for example,
core households are assigned to treatment with different probability and households residing
in zip codes with an odd number of houses are more likely to receive the treatment than if
in a zip with an even number of houses. In conclusion, though we can estimate p̂B there is
no clear way to calculate it’s variance for in this experimental design.
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Testing the Hypothesis of No Spillover Effect

Fortunately, we can take an easier path to assessing the significance of p̂B via hypothesis
testing. Under the null hypothesis of no spillover effect, that is, no B-voters, the individual
behavioral types act accordingly:

Treatment Votes Doesn’t Vote

Not Mailed to Household A-voters B,C,F-voters

Mailed to Other Voter in Household A,B-voters C,F-voters

Mailed Directly A,B,C-voters F-voters

so that RAB/R and QA/Q represent the fraction of A-voters in the control and weaker treat-
ment and their difference, the test statistic p̂B, varies around zero. We restrict ourselves
to the two-voter households with complete data, where neither vote outcomes are missing.
This gives 28,182 voters in 14,091 households. The observed p̂B, from the complete data
sample is still 1.6%, as it was in Table 5.12, and we shall use it as a test statistic, computing
a p-value by simulating it’s distribution under the null hypothesis.

However, simulating the distribution of p̂B, assuming no B-voters requires additional as-
sumptions about the A-voters within two-voter households. Under the null hypothesis of no
B-voters, the distributions of RAB and QA, and thus p̂B, only depend on three aggregated
groupings of the 10 household behavioral types: households with two A-voters (AA), house-
holds with one A-voter and households with no A-voters. Stated another way, in order to
simulate the distribution of p̂B under the null, we must also specify the percent of households
with two, one or no A-voters among the 14,091 two-voter households in the study. We argue
that we can use observations from the control to provide a range of possible proportions for
the three household behavioral types. We test the null hypothesis of no B-voters, repeatedly,
over this range of possible proportions and show that in each case, the null hypothesis is
rejected.

To estimate the proportion of these three household behavioral types, we observe the con-
trol as only A-voters will vote in this treatment condition. By counting the number of votes
within each household we count the number of A-voters in each household and are able
to detect each of the three aggregated household behavioral types. With a total of 7,310
households assigned to the control, we can estimate the proportion of each type and use it in
our simulation. Table 5.14 shows the estimated percent of each type assigned to control. We
see that A-voters are strongly grouped within the two-voter households. Over 22% of the
subjects are A-voters but they are far from evenly distributed as over 70% of the households
contain no A-voters. To understand the range of error, the final column of Table 5.14 lists
a 95% confidence interval computed as if the 7,310 households in the control were drawn
without replacement as a simple random sample (SRS) from the 14,091 households.
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Household Type Observed in Control Percent 95% Confidence Interval (SRS)

Two A-voters 1,137 15.6% (14.9,16.3%)

One A-voter 1,029 14.1% (13.4,14.8%)

No A-voters 5,144 70.3%

Total 7,310 100%

Table 5.14: Household types observed in the control, when restricting to two-voter house-
holds with complete data. The confidence interval is calculated assuming the control is
derived from a simple random sample.

By the complex randomization, the control group is not drawn from an SRS. The sampling
procedure more closely resembles a type of cluster sample which would have a larger confi-
dence region than an SRS of similar size (Lohr, 2009). But the bounds do provide a sense
of the possible proportions of each of the three behavioral types. Once the proportion of
the three household behavioral types is set, it can be used in the simulation to test the
hypothesis of no B-voters.

One final concern is how clustered together the two A and one A-voter households are
to each other. Simply assigning them randomly among the 14,091 households may not ac-
curately reflect how they could be grouped within certain blocks or certain neighborhoods.
We simulated under two extreme assumptions : no clustering, that is, random placement
of the three types of households on the same block and, full clustering, where two A-voter
houses are, to the degree allowable, only neighboring other two A-voter households, and the
same for the one A-voter households and households with no A-voters. With the fraction of
two, one and no A-voter households set, along with the clustering assumption, we take the
raw data, with the zip codes and households of each voter and simulate the randomization
process for all of the one, two and three-voter households, collect the results of the 14,091
two-voter households representing 28,182 voters and calculate the test statistic p̂B. We re-
peat the simulation 40,000 times to give the distribution of p̂B under the null hypothesis.
To recap, we proceed with the algorithm:

1. Set the two assumptions for the within-household distribution of A-voters.

(i) The proportion of two, one and no A-voter households among the 14,091 two-
voter households

(ii) Clustering of A-voters or randomly dispersed.

2. Distribute the three household behavioraly types among the 14,091 two-voter house-
holds according to the assumptions from Step 1.
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3. Using all of the households, including the one and three voter households, and those
without complete data, randomly assign the zip codes, households and voters to treat-
ment as described earlier and shown in Figure 5.1.

4. Construct the contingency table of observations from the 14,091 two-voter households
as in Table 5.13.

5. Calculate p̂B from the contingency table.

6. Repeat Steps 2 – 5 until 40,000 simulations of p̂B are obtained.

We ran simulations under the various assumptions in Step 1 under the hypothesis of no
B-voters to arrive at the following p-values for the observed p̂B of 1.6%. Each row represents
a separate set of assumptions.

Assumptions on distribution of A-voters

HH with HH with Same Type

2 A-voters 1 A-voter Clustering p-value

15.6% 14.1% No .0087

15.6% 14.1% Yes .0084

19.5% 18.1% Yes .0133

Table 5.15: Hypothesis tests specifications and p-values under the null of no B-voters.

We see that even under a range of different assumptions the p-value are smaller than those
found by Sinclair et al. We conclude that, at least for two-voter households with complete
voting data, there is strong evidence for a within-household spillover effect.

5.4 When Does Increasing Mobilization Effort

Increase Turnout? New Theory and Evidence

from a Field Experiment on Reminder Calls

Many GOTV experiments measure the impact of just a single intervention, such as a specific
mailer or phone message, to isolate and quantify a single effect. In the application in Section
5.3, researchers chose a political race expected to receive little attention, hoping to minimize
other electoral influence. Commonly though, citizens are inundated with election mailers,
door knocks and advertisements when voting in districts with heavily resourced campaigns.
In such circumstances a more practical aim is to measure the marginal impact of additional
contacts to voters already reached. Does an extra phone call matter? Political scientists
have approached this question by studying reminder calls, those made close to the election
date after initial outreach attempts, but the studies have differed on whether reminder calls
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are effective. Green and Gerber (2001) find little evidence that multiple contacts increase
turnout beyond the initial attempt, while Michelson, Garćıa Bedolla, and McConnell (2009)
find convincing evidence that, for those stating an intention to vote, follow-up calls can have
a substantial impact.

In a recently posted paper Gerber, Huber, Fang, and Reardon (2016) attempt to measure
the reminder call effect and also uncover the underlying reasons why a reminder call would
increase turnout. Is it the timing of the call, close to the election? Or the combination of
a follow-up call after the voter has already confirmed an intention to vote from an earlier
contact? Does the voter perceive the reminder as an act of kindness from the canvasser and
reciprocates by voting? The experimental design allows the authors to answer such queries.
We highlight this application because, unlike our previous ones, it incorporates compliance
to treatment. As we saw from Sections 2.2 and 4.2.3, the dimension of compliance leads to a
larger number of behavioral types and estimators, based on ratios of random variables, with
more complex variance structure. Additionally, it gives us the opportunity to analyze effects
under a partial ordering of treatments when the relationship between some of the treatments
is ambiguous. Though we don’t have all of the data available to us, we demonstrate how to
draw conclusions if all of the information were in hand.

Gerber et al. devise an experiment with six treatment conditions. The first treatment
includes a nonpartisan early call, 22-25 days before the election, with no other attempts at
contact. The second treatment consists of a late call, 5-7 days before the election, which
reminds subjects of the upcoming vote. The third treatment administers an early and a late
call. In all instances, late calls occur regardless of whether an earlier call was successful and
the script of the late call does not refer to, nor depend on an earlier attempt. The separation
of the early and late call interventions, by design, allows for the testing of numerous hypoth-
esis about the reasons for the impact of the reminder calls. The next two treatments include
an extra interaction in the early call, where the canvasser asks the voter if they would like
a reminder call. The fourth treatment consists of an early call, this time with the offer of a
reminder call, but there is no late call. The fifth treatment is similar to the fourth treatment
but includes a late call, again regardless of whether the voter requests one or not. The sixth
experimental group is a control with no outreach attempts. The six experimental conditions
are summarized below.

1. Early call only

2. Late call only

3. Early and late call

4. Early call, only, with offer of reminder

5. Early with offer of reminder and late call
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6. Control

The inclusion of the offer of a reminder call allows the authors to analyze the impact of the
call conditional on the interactions between the caller and voter. The authors theorize that
the act of the canvasser making a reminder call, or perhaps just offering to make the follow
up call, indebts the subject in such a way to reciprocate the courtesy by carrying out the
canvasser’s request. Much of the paper centers on the underlying reasons reminder calls may
increase turnout. We mention this to explain the motivation for the inclusion of the offer
of a reminder call. For our analysis though, we do not concern ourselves with the testing
of the theories as to why reminder calls may have an effect and instead concentrate on the
initial question of measuring the magnitude of the effect. Again, our interest lies mainly in
applying the behavioral-types approach to an experiment with noncompliance and partial
ordering of the multiple treatments.

The experiment was held in Colorado during the November 2014 midterm election. The Col-
orado Civic Engagement Roundtable implemented the experiment targeting African Ameri-
cans, Latinos, young voters between the age of 17-34 and unmarried women. They excluded
voters who voted in all of the last four elections as they were expected to turnout with
or without contact. Also excluded were long term registrants who didn’t vote in the 2012
presidential election as they were unlikely to vote in the lower turnout midterm race. This
led to a pool of 225,717 eligible voters. The study participants were whittled further by
removing those without a valid phone number or without a valid state ID–needed to match
voters to administrative data on voter turnout. Finally, just one voter was chosen in house-
holds with multiple voters to minimize subject-to-subject interactions and violations of the
SUTVA. The ultimate sample numbered 139,153 registered voters. Each subject was then
assigned independently to a treatment according to the following probabilities. The first
three treatments with an early call, a late call or both calls, without an offer of a followup,
were assigned with a probability of 0.125. The fourth and fifth treatments, which offered a
reminder call were assigned with a probability of 0.25 each. The control condition was as-
signed with a probability of 0.125. This differs slightly from the first two applications where
the total in each treatment condition is fixed before the assignment process. As we shall
show, even with a random total in each treatment, we will be able to estimate parameters
from the table of observations, similar to the first three applications. Though this does lead
to a more complicated variance calculation which is presented in Section 5.6.

Analysis and Conclusions by Experimenters

The paper contains a number of separate investigations but begins with most straightforward,
measuring an ITT effect for a reminder call after an early call. To measure the effect they
subset their sample to the 104,674 subjects assigned to the four treatments with an early
call: the first, third, fourth and fifth treatments. This is not an ATT effect -compliance is
not used– the authors characterize it as an ITT effect, conditional on being assigned an early
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call. They use ordinary least squares assuming the model

Yi = α + β1(Assigned Late Call)i +
∑
j

γjXji + ui (5.2)

where Y is the usual voting indicator, β is the primary parameter of interest, and Xj rep-
resent covariates for age, gender, race and past voting history. As in the other applications
presented in the chapter, they find the extra predictor variables have little impact on the
results. They arrive at an estimate for β of -0.1% with an SE of 0.3% and conclude there is
little evidence for an average effect over the entire sample.

The authors make two choices in their analysis worth noting. First, they omit including
the offer of a reminder into the model, effectively combining the four treatments into two.
Also, they do not try to estimate the impact of the early call. By restricting to just those
assigned an early call, groups three and five become a quasi-control group to determine the
impact of the reminder call. Curiously, throughout the paper, they do not use the second
treatment group, with just the late call, nor do they use the control group in any of their
investigations. Thus, no separate estimates of the effect of an early call is reported. Nor
do they report an estimate of a stand-alone “late call effect”, the influence of a late call is
always within the context of an earlier call attempt.

Next they determine the effect of being assigned a reminder call, for those who received
the early call. This is closer to, but still different from, the ATT which would focus on those
who receive the reminder call. Instead they estimate an ITT effect, a reminder call condi-
tional on receipt of an early call. Again, the separate interventions of the early and late call
allow for this type of subgroup analysis because the assignment of the late call is independent
of whether a subject receives an early call. Since the compliance rate for those receiving
the early call is just a little higher than 20%, this reduces the sample size to 22,120 and
they estimate this conditional ITT effect again with OLS using Equation 5.2. This results
in an estimate of 1.2% with a standard error of 0.6%. This is the primary finding of the study.

The authors deepen their investigation of the reminder call by further subsetting the data
to test four hypotheses pertaining to the underlying reasons of why the calls could be effec-
tive, all of which utilize a variable for “offer of a reminder call” in the modeling. And they
conclude the paper with constructing models which control for certain covariates, to explore
heterogeneous effects such as the impact of reminder calls on those who state they intend
to vote. We won’t delve further into these, and focus our application of the behavioral-
types approach on ITT and ATT effects for reminder calls, similar to the first two estimates
provided in the study.
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Analysis with Behavioral Types

Gerber et al. focus on ITT effects which do not depend on compliance. Though we do
not have access to the data, we describe how to examine the treatment effects if we had a
summary table of the aggregated compliance and voting totals for each treatment group.
We estimate the same conditional ITT effects with the behavioral-types approach, and also
estimate an ATT effect.

In our approach, the aim is to completely determine the fraction of each of the distinct
behavioral types in the sample. To do so, we use the observations from all six of the treat-
ment conditions. As can be seen in Equation 5.2 the offer of a follow up is not included
in the model used by the authors to measure the ITT effect for a remainder call after an
early call nor to measure the ITT effect of a reminder call conditional on receipt of an early
call. The authors do include a variable for the offer of a follow up in their explorations of
why follow up calls have impact. But since we won’t look into this, restricting ourselves to
the first two estimates, we follow the authors lead, disregarding the offer of a follow up as
a separate treatment, combining the first and fourth groups into one “early call” treatment
and the third and fifth group into a “both early and late” treatment. Along with the control
and late calls only group, this gives four separate treatment conditions for the experiment.

We can now describe the different behavioral types. As was shown in Sections 2.2, 4.2.1
and 4.2.3, when compliance is observed we may separate the compliance behavior from the
response behavior, and we find it more illuminating to begin with the compliance. Similar
to Example 4.2.3 with a control and three degrees of treatment, in this experiment there
are four flavors of compliance behavior. Perfect compliers receive whichever treatment is
assigned. Nevertakers never pick up the phone and receive “no call” (control) each time.
Early compliers only comply with an early call. They receive the early call but not the late
call, so receive the early treatment if assigned to early or both and receive no call if assigned
to the control or late call. In the same manner, Late compliers receive just the late call,
thus receive the late treatment if assigned to late or both and receive no call if assigned to
the control or early call.

The response behavior presents a new complication as it is not clear which of the early
or late calls is the stronger treatment so the restriction of monotonicity may not apply. If
there was a clear order, then the distinct behavioral types would be analogous to the 13
types in Example 4.2.3. Could the late call be a stronger treatment than the early call?
Nickerson (2007) argues that, on average, calls made closer to the election date are more ef-
fective in a study where voters were subject to multiple outreach efforts. However, a GOTV
study by Panagopoulos (2011) tests this and finds little evidence that later calls increase
turnout more than earlier ones. In any case, it seems plausible that there could exist sizable
fractions of the sample who vote if called early but not if called late–perhaps someone who
would mail an absentee ballot early on but would not be able to vote at a polling station–
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and also individuals who vote if called late but not if called early–where the reminder is
more effective closer to election day. Instead of a strict ordering of treatments we consider
a partial ordering where the control is the weakest treatment condition and receiving both
calls is the strongest. In between, the early and late calls are not comparable but we allow
types that have voting outcomes changed by one of the timings of the call but not the other.
This results in six different response behaviors. The first four are as before. A-voters vote
and F-voters do not, no matter the treatment received. B-voters vote when receiving the
early or late call or both. And D-voters vote if and only if they receive both calls. The
difference is in the C-voters which now has two distinct subtypes: C-early voters (C

E
) vote

if they receive an early call, but not if they receive a late call; C-late voters (C
L
) vote if they

receive a late call, but not for an early one. The behavior of the six voting types to each
received treatment are summarized below.

Treatment Received Votes Doesn’t Vote

No Call (Control) A-voters B,C,D,E,F-voters

Early Call A,B,CE-voters CL,D,F-voters

Late Call A,B,CL,-voters CE,D,F-voters

Both Calls A,B,CE,CL,D-voters F-voters

We combine the compliance and response behaviors to enumerate the distinct behavioral
types intrinsic to the experiment. Perfect compliers have a distinct behavioral type for each
of the six voting types (perfect

A
, ..., perfect

F
). Nevertakers consist of just two voting types:

A-voters (never
A
) and all other voting types which act in the same way as they don’t receive

either call (never
B–F

). For early compliers, who don’t receive late calls, A-voters form a dis-
tinct behavioral type. And (early

A
) and B and CE-voters are indistinguishable, as the early

call is the strongest treatment received, thus forming a single behavioral type (early
BC

E
).

Furthermore, CL, D and F-voters do not receive calls and nor do they vote in any treatment
and can also be combined as (early

C
L

DF
). Using the same reasoning, late compliers also

include three behavioral types (late
A
, late

BC
L
and late

C
E

DF
). Tables 5.16 to 5.20 show the

compliance and response values for each assignment, for each of the behavioral types. In
total, there are 6+ 2+ 3+ 3 = 14 distinct behavioral types, whose proportions must sum to
1, yielding an estimation problem with 13 parameters.
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Assigned Received Response Response Response Response

Treatment Treatment perfect
A

perfect
B

perfect
D

perfect
F

Control No call Votes Doesn’t vote Doesn’t vote Doesn’t vote

Early call Early call Votes Votes Doesn’t vote Doesn’t vote

Late call Late call Votes Votes Doesn’t vote Doesn’t vote

Both calls Both calls Votes Votes Votes Doesn’t vote

Table 5.16: Compliance and response to each assigned treatment for the A, B, D and F
types of perfect compliers.

Assigned Received Response Response

Treatment Treatment perfect
CE

perfect
CL

Control No call Doesn’t vote Doesn’t vote

Early call Early call Votes Doesn’t vote

Late call Late call Doesn’t vote Votes

Both calls Both calls Votes Votes

Table 5.17: Compliance and response to each assigned treatment for the C-early and C-late
types of perfect compliers.

Assigned Received Response Response Response

Treatment Treatment early
A

early
BC

E
early

CLDF

Control No call Votes Doesn’t vote Doesn’t vote

Early call Early call Votes Votes Doesn’t vote

Late call No call Votes Doesn’t vote Doesn’t vote

Both calls Early call Votes Votes Doesn’t vote

Table 5.18: Compliance and response to each assigned treatment for the three types of early
compliers.
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Assigned Received Response Response Response

Treatment Treatment late
A

late
BC

L
late

CEDF

Control No call Votes Doesn’t vote Doesn’t vote

Early call No call Votes Doesn’t vote Doesn’t vote

Late call Late call Votes Votes Doesn’t vote

Both calls Late call Votes Votes Doesn’t vote

Table 5.19: Compliance and response to each assigned treatment for the three types of late
compliers.

Assigned Received Response Response

Treatment Treatment never
A

never
B–F

Control No call Votes Doesn’t vote

Early call No call Votes Doesn’t vote

Late call No call Votes Doesn’t vote

Both calls No call Votes Doesn’t vote

Table 5.20: Compliance and response to each assigned treatment for the two types of nev-
ertakers.

With the distinct behavioral types established, the next task is estimate the proportions of
each type from the data, thus identifying the parameters of the model. Using the notation
introduced in Section 4.2.3 we let Qyd represent the random total of observations of the sub-
jects assigned to the control who respond with voting value y and comply with treatment d,
Ryd for those assigned to the early treatment,Syd for late and Tyd for both. The aggregated
voting outcomes appear in the two by nine table of observed results.

Assigned Assigned Assigned Assigned

Control Early Call Late Call Both Calls

Received Received Received Received

No Call No Call Early No Call Late No Call Early Late Both

Didn’t Vote Q0no call R0no call R0 early S0no call S0 late T0no call T0 early T0 late T0 both

Voted Q1no call R1no call R1 early S1no call S1 late T1no call T1 early T1 late T1 both

Total Q R S T
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Since they are not fixed by design, the totals in the treatment groups, Q, R, S and T , are
random quantities so, in this study, the table of observations has 17 degrees of freedom (if
the number assigned to each treatment was set in advance there would be 1+3+3+7 = 14
degrees of freedom, still sufficient for estimating the 13 parameters). We now place the
behavioral types according to the cell in which they appear in the table of observed data.
This is shown in Table 5.21.

Assigned Assigned Assigned Assigned

Control Early Call Late Call Both Calls

Received Received Received Received

No Call No Call Early No Call Late No Call Early Late Both

Didn’t Vote perfect
F

perfect
F

perfect
F

perfect
F

late
CEDF

late
CEDF

late
CEDF

late
CEDF

early
CLDF

early
CLDF

early
CLDF

early
CLDF

never
B–F

never
B–F

never
B–F

never
B–F

perfect
D

perfect
D

perfect
D

perfect
CE

perfect
CE

perfect
CL

perfect
CL

late
BCL

late
BCL

perfect
B

early
BC

E

Voted perfect
D

perfect
CL

perfect
CL

perfect
CE

perfect
CE

late
BCL

late
BCL

perfect
B

perfect
B

perfect
B

early
BC

E
early

BC
E

early
BC

E

perfect
A

perfect
A

perfect
A

perfect
A

late
A

late
A

late
A

late
A

early
A

early
A

early
A

early
A

never
A

never
A

never
A

never
A

Table 5.21: Location of the 14 behavioral types in the table of observations for the reminder
call experiment.

Each cell of table of observations provides a linear equation in the estimation problem. For
example, there are only three behavioral types which, if assigned to the early call treatment,
do not comply with treatment (receiving the the control treatment, that is, no call) and do
not vote: late

BCL
, late

CEDF
and never

B–F
. Thus the fraction of voters assigned to the early
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call who neither comply nor vote provide an estimate of the fraction of the three behavioral
types.

R0no call/R = p̂
late

CEDF
+ p̂

late
BCL

+ p̂never
B–F

In total, this gives an overdetermined system of 17 equations (again 14 if the number in each
treatment group is fixed) and 13 parameters. We refer the readers to other discussions of
such estimation problems such as a recent piece by Awange and Paláncz (2016).

Once the parameters have been estimated, the plug-in principle is used to calculate the
variances and standard errors which are found in Section 5.6. And we arrive at our ultimate
aim, using the fractions of the behavioral types to estimate the treatment effects of interest.

The first estimate: ITT effect of a reminder call after an early GOTV attempt

We turn our attention to the interpreting the effect as a combination of behavioral types.
Gerber et al. characterize the intention-to-treat effect of the reminder call as the marginal
increase in voter turnout for those assigned to both calls, compared to those assigned to the
early call.

ittreminder ≡ ittboth − ittearly (5.3)

We reach this in two ways, first by describing both terms on the right hand side of 5.3 in
terms of behavioral types, and second by a more intuitive approach. The first path is more
methodical, but also more accessible as it utilizes the well understood intention-to-treat
effect. Setting the total number of subjects in the sample to n, where n = Q + R + S + T ,
the itt for the early call is the difference between those who vote if assigned to the early call
and those who vote if assigned to control.

ittearly =
#(vote if assigned early)

n
− #(vote if assigned control)

n

We separate subjects who vote if assigned to the early treatment into two behavioral groups:
vote if assigned to control versus don’t vote if assigned to control but do vote if assigned to
the early call.

ittearly=

[
#(vote if assigned control) + #(vote if assigned early, don’t vote if assigned control)

n

]
− #(vote if assigned control)

n

=
#(vote if assigned early, don’t vote if assigned control)

n
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and from Table 5.21 we identify the specific behavioral types which vote if assigned early,
but not if assigned to the control so that

ittearly =
#(early

BC
E
or perfect

B
or perfect

CE
)

n

= p
early

BC
E

+ p
perfect

B
+ p

perfect
CE

(5.4)

The intention-to-treat effect for both calls is evaluated in a like manner to uncover its
connection to the behavioral types. Here, we recognize that those who vote if assigned to
both calls may be divided into those who vote, or don’t vote under the control condition.

ittboth =
#(vote if assigned both)

n
− #(vote if assigned control)

n

=

[
#(vote if assigned control) + #(vote if assigned both, don’t vote if assigned control)

n

]
− #(vote if assigned control)

n

=
#(vote if assigned both, don’t vote if assigned control)

n

=
#(early

BC
E
or perfect

B
or perfect

CE
or perfect

CL
or perfect

D
or late

BC
L
)

n

= p
early

BC
E

+ p
perfect

B
+ p

perfect
CE

+ p
perfect

CL

+ p
perfect

D
+ p

late
BC

L

(5.5)

We substitute Equations 5.4 and 5.5 into 5.3 and reveal the behavioral types making up
ittreminder.

ittreminder = ittboth − ittearly

= p
perfect

CL

+ p
perfect

D
+ p

late
BC

L

(5.6)

We can also arrive at 5.6 via a more intuitive, and immediate path. As ittreminder is the
increase in the percentage of voters from the early call to both calls, the effect consists of
the three behavioral types in Table 5.21 which don’t vote if assigned to early but do vote if
assigned to both calls: perfect

CL
, perfect

D
and late

BC
L
.

There are two clear estimates of ittreminder, the first is directly from the table of obser-
vations, the difference between the voting rate of the early and both calls treatments.
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îttreminder =
T1no call + T1 early + T1 late + T1 both

T
− R1no call +R1 early

R
(5.7)

The variance of this estimate, which now has random quantities in the numerator and
denominator, is discussed in Section 5.6. However we may also use another estimate of the
effect from the estimated percentage of behavioral types

îttreminder = p̂
perfect

CL

+ p̂
perfect

D
+ p̂

late
BC

L

(5.8)

where the fraction of behavioral types are solved from the overdetermined system of linear
equations. It should be clear that while these estimates should be close, they aren’t the
same. Equation 5.7 may provide a less accurate estimate as it is a linear combination of the
equations which lead to the behavioral types in Equation 5.8. But computing the variance
of the îttreminder under Equation 5.8 is more difficult because one must solve the covariance
structure of the p̂type which is not so easy when they are solutions to an overdetermined
system of linear equations. For these reasons we use the estimate in Equation 5.7 for our
analysis.

The second estimate: ITT effect of a reminder call conditional on receiving the
early call

The second estimate of the paper is the ittreminder restricted to those who received the first
call. We use what we’ve learned from the first estimate, modifying our evaluation so that it
is conditional on receipt of the first call.

ittreminder | receive early

= ittboth | receive early− ittearly | receive early

=
#(vote if assigned both, don’t vote in control, receive early)

#(receive early)

− #(vote if assigned early, don’t vote in control, receive early)

#(receive early)

where the numerators may be evaluated in the manner of those in Equations 5.4 and 5.5
with late

BC
L
excluded as they don’t receive the early treatment so that

=
#(early

BC
E
or perfect

B
or perfect

CE
or perfect

CL
or perfect

D
)

#(early or perfect compliers)
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−
#(early

BC
E
or perfect

B
or perfect

CE
)

#(early or perfect compliers)

=
#( perfect

CL
or perfect

D
)

#(early or perfect compliers)

=
p

perfect
CL

+ p
perfect

D

p
early

+ p
perfect

(5.9)

where p
early

represents the fraction of all three of the early compliers and p
perfect

represents

the fraction of all six of the perfect compliers. As with îttreminder, we have two immediately
available options from Equation 5.9 for estimating the parameter. We may use the p̂type from
the system of equations but that presents the same complicated variance calculation. Again,
we take the approach of estimating from the table of observations where the numerator of
5.9 is estimated as

p̂
perfect

CL

+ p̂
perfect

D
=

T1 early + T1 both

T
− R1 early

R
(5.10)

and the denominator is estimated from the subjects who receive treatment if assigned to the
early or both calls condition, i.e.

p̂
early

+ p̂
perfect

=
R0 early +R1 early + T0 early + T1 early + T0 both + T1 both

R + T

which gives the estimate of

îttreminder | receive early =

T1 early+T1 both

T
− R1 early

R
R0 early+R1 early+T0 early+T1 early+T0 both+T1 both

R+T

.

A third estimate: ATT of a reminder call

We can further the authors analysis to provide an estimate of the ATT effect of the reminder
call. This is the treatment effect on those who comply with the entire treatment protocol of
receiving both calls, i.e., the effect on the perfect compliers. Restricting ourselves to those
treated, the effect of interest is the marginal increase in voting for those who are assigned
and received both calls, above the turnout for the perfect compliers that are assigned only
the early call.

attreminder=
#(vote if assigned both, don’t vote if assigned early, receive both if assigned both)

#(receive both if assigned both)
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=
#( perfect

CL
or perfect

D
)

#(perfect compliers)

=
p

perfect
CL

+ p
perfect

D

p
perfect

(5.11)

For âttreminder the numerator is estimated via Equation 5.10 and the denominator is the
fraction of subjects who receive both calls if assigned both calls.

âttreminder =

T1 early+T1 both

T
− R1 early

R
T0 early+T1 early+T0 both+T1 both

T

(5.12)

We conclude by noting a familiar identity for the ATT parameter. From Equation 5.11

attreminder =
p

perfect
CL

+ p
perfect

D

p
perfect

=

p
perfect

CL

+ p
perfect

D

p
early

+p
perfect

p
perfect

p
early

+p
perfect

=
ittreminder | receive early

(compliance rate for late call given receive early)

(5.13)

so that Equation 5.13 is the analogue of Equation 2.7, att = itt/(compliance rate).

5.5 Discussion

We included four applications in this chapter to exhibit the use of the behavioral-types ap-
proach to estimate causal effects under a variety of experimental settings with multiple levels
of treatment. A behavioral-types approach is well suited to multi-treatment experiments
because it distills these often complex designs into an estimation problem of a manageable
number of types. When compared to linear modeling, the common method of the studies,
the behavioral types framework may not lead to different estimates but often leads to a dif-
ferent standard error, changing the significance of the conclusions. The first two applications
adhere to the widely applicable Intention-to-Treat analysis of strictly ordered treatments,
described in Example 4.2.2. The last two applications illustrate the nuances in the analysis
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brought on by more elaborate experimental designs. The application in 5.3 demonstrates
how hypothesis testing may be able to verify the existence of an effect even when the distinct
behavioral types are not identifiable. Additionally the application displays how simulations
can be used to measure significance when randomization schemes are complex. In 5.4 the
experimental design results in a partially ordered set of treatments. It also presents the chal-
lenge of an overdetermined system of equations to identify the parameters. And 5.4 shows
how seemingly minor details in the design, such as whether the total assigned to treatment
is fixed or random, changes the number of rows in the system of estimating equations.

As shown in Chapter 4, a design with more distinct treatments and compliance outcomes
leads to more distinct behavioral types. And, more complicated randomization schemes re-
sult in more complicated calculations of significance. Despite these differences among the
applications, there are common steps in our behavioral types analysis. In each, we proceeded
along the following steps.

1. Identify the distinct behavioral types. These are intrinsically tied to experimental de-
sign. Each behavioral type can be located in the table of observations, as in Table 5.21,
indicating the cell in which the behavioral type lands for each treatment assignment.

2. Represent the treatment effects of interest in terms of the behavioral types.

3. Determine how to estimate the distinct behavioral types, and thus treatment effects,
from the table of observations. In some cases, when parameters are not identifiable,
we may still be able to detect the presence of certain effects via hypothesis testing.

4. Use the sampling process of the experiment to calculate either the variances of the
estimates or, if hypothesis testing, the distribution of the test statistic. In complex
randomization designs, simulations maybe be helpful when analytical calculations are
not possible.

At this point, we have only concerned ourselves with single parameter inference. We discuss
confidence regions for multi-parameter inference in Chapter 6.
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5.6 Variance Calculations

This section describes how we arrive at the standard errors in Sections 5.1 and 5.2. As
discussed in Chapter 3, the asymptotic normality of the estimators is established by Theorem
5 of Li and Ding (2017).

Social Pressure Experiment

To determine the variance of p̂ we note that it can be represented as a transformation of
the observations listed as a column vector.

p̂ = Ψ · [QA, RAB, SABC , TABCD, UABCDE]
′

where

Ψ =



1
q

0 0 0 0

−1
q

1
r

0 0 0

0 −1
r

1
s

0 0

0 0 −1
s

1
t

0

0 0 0 −1
t

1
u


,

so the variance of p̂ will be ΨVar([QA, RAB, SABC , TABCD, UABCDE])Ψ
′. To find the covari-

ance matrix of the observations, the diagonals terms are from the hypergeometric distribu-
tion. That is,

Var(QA) =
q(n− q)nA(n− nA)

n2(n− 1)

=
q(n− q)pA(1− pA)

n− 1

and similarly

Var(RAB) =
r(n− r)(pA + pB)(1− pA − pB)

n− 1

Var(SABC) =
s(n− s)(pA + pB + pC)(1− pA − pB − pC)

n− 1

Var(TABCD) =
t(n− t)(pA + pB + pC + pD)(1− pA − pB − pC − pD)

n− 1

Var(UABCDE) =
u(n− u)(pA + pB + pC + pD + pE)(1− pA − pB − pC − pD − pE)

n− 1
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We calculate the covariance terms in the same manner as in Section 3.2. For example, con-
sider Cov(RAB, TABCD). Since RAB is RA +RB and TABCD is TA + TB + TC + TD, we have

Cov(RAB, TABCD) =Cov(RA, TA) + Cov(RA, TB) + Cov(RA, TC) + Cov(RA, TD)+

Cov(RB, TA) + Cov(RB, TB) + Cov(RB, TC) + Cov(RB, TD). (5.14)

As it turns out, the covariance formulas from Equations 3.4 and 3.5 of section 3.2 apply here
as well so that

Cov(Rtype i, Ttype i) = −r t ntype i(n− ntype i)

n2(n− 1)

= −r t ptype i(1− ptype i)

n− 1
, (5.15)

and

Cov(Rtype i, Ttype j) =
r t ntype i ntype j

n2(n− 1)

=
r t ptype i ptype j

n− 1
for i ̸= j. (5.16)

We may substitute these into Equation 5.14 so that

Cov(RAB, TABCD) =
rt

n− 1
{ pA(1− pA) + pApB + pApC + pApD+

pApB + pB(1− pB) + pBpC + pBpD }. (5.17)

The other nine covariance entries in Var([QA, RAB, SABC , TABCD, UABCDE])
′ are calcu-

lated in the same manner as (5.17) and listed below.

Cov(QA, RAB) =
qr

n− 1
{pA(1− pA) + pApB}

Cov(QA, SABC) =
qs

n− 1
{pA(1− pA) + pApB + pApC}

Cov(QA, TABCD) =
qt

n− 1
{pA(1− pA) + pApB + pApC + pApD}
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Cov(QA, UABCDE) =
qu

n− 1
{pA(1− pA) + pApB + pApC + pApD + pApE}

Cov(RAB, SABC) =
rs

n− 1
{ pA(1− pA) + pApB + pApC+

pApB + pB(1− pB) + pBpC }

Cov(RAB, TABCD) = see above

Cov(RAB, UABCDE) =
ru

n− 1
{ pA(1− pA) + pApB + pApC + pApD + pApE+

pApB + pB(1− pB) + pBpC + pBpD + pBpE }

Cov(SABC , TABCD) =
st

n− 1
{ pA(1− pA) + pApB + pApC + pApD+

pApB + pB(1− pB) + pBpC + pBpD+

pApC + pBpC + pC(1− pC) + pCpD }

Cov(SABC , UABCDE) =
su

n− 1
{ pA(1− pA) + pApB + pApC + pApD + pApE+

pApB + pB(1− pB) + pBpC + pBpD + pBpE+

pApC + pBpC + pC(1− pC) + pCpD + pCpE }

Cov(TABCD, UABCDE) =
tu

n− 1
{ pA(1− pA) + pApB + pApC + pApD + pApE+

pApB + pB(1− pB) + pBpC + pBpD + pBpE+

pApC + pBpC + pC(1− pC) + pCpD + pCpE+

pApD + pBpD + pCpD + pD(1− pD) + pDpE }

We have all the formulas needed for the variance as

Var(p̂) = ΨVar([QA, RAB, SABC , TABCD, UABCDE])Ψ
′.

For the standard errors we use the plug-in principle substituting p̂ for p.
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Book Donation Experiment

For this experiment Var([QA, RAB, SABC) is simply the upper left three by three submatrix
of Var([QA, RAB, SABC , TABCD, UABCDE]), that is consisting of the first three rows and first
three columns. Similarly to transform the observations to p̂ we apply the matrix Ψ[1 : 3, 1 :
3] which equals the first three rows and first three columns of Ψ. Thus

Var(p̂) = Ψ[1 : 3, 1 : 3]Var([QA, RAB, SABC ])Ψ[1 : 3, 1 : 3]′

and we again use the plug-in principle substituting p̂ for p.
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Chapter 6

Confidence Regions for
Multi-parameter Inference

In Chapter 5 we demonstrated how to calculate confidence intervals for each individual
parameter but postponed concerns of joint significance. In general, the more parameters
estimated the higher the chance of erroneous conclusions. In our inference problem the
parameter estimates, the fraction of each behavioral type, sum to one so they are negatively
correlated. With this relationship, if one estimate is above is above it’s true value, another
estimate is more likely to be below it’s true value. Simply reporting the individual confidence
intervals may misrepresent the joint variation of the two estimates. We address this concern
by constructing multiparameter confidence regions. We restrict ourselves to the simplest
case when assignment is done at the individual level, without replacement with complete,
or unknown, compliance and extend the work of the single parameter inference to find
confidence regions for two of the applications in the previous chapter. We discuss how more
complex experiments may be addressed in the final section.

The broader subject of multi-parameter estimation and multiple testing has been an area
of research in statistics for decades (see Miller, 1981; Shaffer, 1995) and has seen renewed
interest due to problems arising in genetics and bioinformatics (see Goeman and Solari,
2014). In settings with multiple parameters, questions of joint significance, based on the
joint distribution of the estimates, naturally arise. In our experiments the highly correlated
parameter estimates lead to highly dependent hypothesis tests and such settings can lead
to overly conservative tests (Perneger, 1998; Fiedler, Kutzner, and Krueger, 2012) We do
not aim to develop optimal simultaneous confidence intervals or confidence regions for the
parameters. Instead, we propose using confidence regions as a tool to understand the joint
variation of the parameter estimates. Confidence regions still come with their own challenges.
We show how well understood methods to develop regions often do not attain the desired
nominal coverage rates and how this difference may be corrected. And we show how useful
conclusions can be drawn from the examination of these regions.

We proceed as follows. In the first section we discuss the normal approximation and show,
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despite the theoretical benefits, the approximation results in regions with poor coverage rates.
In section two we show how bootstrap approaches provide a pragmatic way to overcome the
shortcomings of the normal approximation regions. In section three we refine our approach
via the double bootstrap, first proposed by Beran (1987), which offers a self-correcting
method to arrive at appropriately sized regions. We also examine the regions for two of the
applications from the previous chapter. In section four we present other methods to construct
confidence sets and briefly discuss the advantages and challenges with each. Finally we draw
conclusions and discuss areas for further exploration.

6.1 Constructing Regions via the Normal

Approximation

We return to the experimental design with k levels of ordered treatments where compliance
is either complete or unknown as described in Example 4.2.2 of Chapter 4. This design leads
to an estimation problem with l = k + 1 free parameters. It is also the design of two of
the experiments from the previous chapter: the Social Pressure experiment, restricted to
single-voter households, of Gerber, Green and Larimer, described in Section 5.1, and the
Book Donation experiment of Cotterill, John and Richardson, described Section 5.2. Here
our estimate is p̂ = (p̂A, p̂B, ..., p̂F ), the fraction of behavioral types of all experimental
subjects which has an expectation of p = (pA, pB, ..., pF ) and a variance of Σ/n. If p̂ is well
approximated by the normal distribution, that is, if p̂ ∼ N(p,Σ/n) then we may use the T 2

statistic of Hotelling (1931) defined as

T 2 = (p̂− p)′
1

n
Σ̂−1 (p̂− p) ,

where Σ̂/n is the estimated covariance of p̂ as described in Section 5.6. A rescaling gives

T 21

l

(
n− l

n− 1

)
∼ F(l, n− l). (6.1)

The elliptical region determined by the 1-α quantile of the F distribution,{
p : (p̂− p)′

1

n
Σ̂−1 (p̂− p)

1

l

(
n− l

n− 1

)
≤ Fl,n−l(1−α)

}
, (6.2)

forms a 1 − α level confidence region for p. Furthermore, under the key assumption of
normality of p̂, (p̂− p)′ Σ̂−1/n (p̂− p) is the test statistic of a uniformly most powerful
(UMP) test for p so that the region described by 6.2 corresponds with an optimal confidence
region for the parameter (see Anderson, 1984, Ch 5). As n increases, lFl,n−l converges in
distribution to a χ2

l random variable. For large n, we may more elegantly approximate the
confidence region as {

p : (p̂− p)′
1

n
Σ̂−1 (p̂− p) ≤ χ2

l,(1−α)

}
. (6.3)
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This returns us to directly using Hotelling’s T 2 statistic (as we moved l to the right hand side
and n− l/n−1goesto1). In the applications we evaluate, n = 47, 836 and l = 5 for the Social
Pressure experiment while n = 11, 812 and l = 3 for the Book Donation study. For both
experiments, if p̂ follows a normal distribution, the confidence region is well approximated
by the region in 6.3. For smaller n, or larger k, the region in 6.2 is more appropriate.

One final consideration for this estimation problem is proportions of each behavioral type
are known to lie within [0, 1] and proportions will sum to one. In contrast, normal random
variables, and their estimates, are unbounded and could be negative. We incorporate these
parameter constraints, by taking the additional step of truncating the confidence region
outside these bounds. Truncation, for any confidence set, does not change the coverage rate
if the parameters truly are subject to the constraints.

The assumption of normality is central to the validity of the region. As described in
Example 4.2.2, the underlying data generating process is a multivariate hypergeometric dis-
tribution with multiple draws. Thus, the normality assumption relies on the degree to which
(p̂− p)′ Σ̂−1/n (p̂− p) is distributed as an χ2

l random variable. To test this we conduct
simulations of the Social Pressure and Book Donation experiments. In both simulation set-
tings we choose the true parameters to be the same as the estimates of parameters found in
Tables 5.6 and 5.9. The sample sizes of each of the experimental groups is set to the sample
sizes of the original studies and we simulate each experiment 10,000 times resulting in an
estimate p̂ and confidence region of p for each simulation. With the simulations in hand,
we may then examine the distribution of the (p̂− p)′ Σ̂−1/n (p̂− p) used to form the region
and calculate how often the confidence region actually covers the true parameter vector.

Figure 6.1 shows the resulting quantile-quantile plot of (p̂− p)′ Σ̂−1/n (p̂− p) to the
theoretical χ2

l distribution. For both experiments, the actual distribution of the statistic
tends to slightly higher values than those of the theoretical one, if the underlying p̂ was a
normal random variable. This indicates the critical value for the region, χ2

l(1−α), will be too
small and lead to regions that are too small and have under coverage of the true parameters.
The distribution of the statistic from the Book Donation experiment appears to diverge
more strongly from normality than that of the Social Pressure experiment. However, for the
Social Pressure experiment l = 5 while for the Book Donation l = 3 so this may just be due
to the lower degrees of freedom.

The impact of the non-normality may also be seen in Table 6.1 which shows the actual
coverage rates of the true parameter for 99%, 95% and 90% coverage regions for the 10,000
simulations. As expected from Figure 6.1, the coverages rates are significantly below the the
target, or nominal, rate.

6.2 Constructing Regions via the Bootstrap

Similar to regions constructed via normal approximation, bootstrap regions consist of the
elliptical sphere
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Figure 6.1: Comparing (p̂− p)′ Σ̂−1/n (p̂− p) to the theoretical χ2
l distribution.

Social Pressure Book Donation

Coverage Std. Coverage Std.

Rate Error Rate Error

99% region 97.7% 0.15% 97.3% 0.16%

95% region 90.9% 0.29% 92.4% 0.27%

90% region 83.3% 0.37% 87.3% 0.33%

Table 6.1: Coverage rates, and standard error for coverage rates, for normal approximation
confidence regions at 99%, 95% and 90% coverage levels, based on 10,000 simulations.

{
p : (p̂− p)′

1

n
Σ̂−1 (p̂− p) ≤ t2∗(1−α)

}
, (6.4)

where the critical value t2∗(1−α) is determined by the bootstrap distribution (see Efron and

Tibshirani, 1993; Davison and Hinkley, 1997) instead of a critical value of the F or χ2

distribution. The distribution of the bootstrap random variable t2∗, is found by creating
a series of replicates of the data. We take the Book Donation experiment as an example,
with observed data of (QA, QBCF , RAB, RCF , SABC , SF ). We will describe shortly, in detail,
how the bootstrap replicates are created. The bootstrap procedure is to find b bootstrap
replicates of (p̂− p)′ Σ̂−1/n (p̂− p) according to Algorithm 1.

Following the work of Hall (1992, p160), and also described by Davison and Hinkley
(1997, p231), the elliptical region derived by finding t2∗(1−α) in this manner is called the
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Algorithm 1 Bootstrap to construct a 1− α confidence region for p.

1. Calculate p̂ and Σ̂ from the original observed data, (QA, QBCF , RAB, RCF , SABC , SF ),
based on the formulas in 5.6.

2. For i = 1, 2, ..., b

(a) Replicate the data, denote it as (Q∗
A, Q

∗
BCF , R

∗
AB, R

∗
CF , S

∗
ABC , S

∗
F )i. We discuss in

more detail how to do this shortly.

(b) From the formulas in 5.6 use (Q∗
A, Q

∗
BCF , R

∗
AB, R

∗
CF , S

∗
ABC , S

∗
F )i to calculate p̂∗

i

and Σ̂∗
i .

(c) Set t2∗i = (p̂∗ − p̂)
′
Σ̂∗−1/n (p̂∗ − p̂)

End loop

3. Set t2∗(1−α) to be the 1− α quantile of t2∗1 , t2∗2 , ..., t2∗b .

4. Define the confidence region of p as the set{
p : (p̂− p)′

1

n
Σ̂−1 (p̂− p) ≤ t2∗(1−α)

}

studentized bootstrap region as it is the multidimensional extension of the studentized or
bootstrap-t method (Efron, 1982, p87). The advantage of the bootstrap comes from using the
full empirical distribution of the observed data, instead of just the sufficient statistics for the
mean and sample covariance. Rather than assume (p̂− p)′ Σ̂−1/2 is normal, it’s distribution

may be well approximated by the bootstrap replicates (p̂∗ − p̂)
′
Σ̂∗−1/2 and the distribution

of the replicates may be found via simulation.
The resampling incorporates a number of key features of the experimental setting. First,

adhering to the potential outcomes framework, we have a clear data generating process
and, though a simple one, a parametric model where the parameter vector is the fraction
of behavioral types. Second, the assignment to treatment is done without replacement,
which impacts the covariance structure of the joint estimates. We find little in the bootstrap
literature on sampling of dependent data of the type in our experiment. Even the aptly
named Resampling Methods for Dependent Data (Lahiri, 2003, 2013) has little related to
RCTs, with complex designs, where assignment is done without replacement. Much of the
focus of research on bootstrapping with dependent data has been on times series (Davison,
Hinkley, and Young, 2003; Carey, 2005). Third, the data is categorical which is nearly always
handled with multinomial sampling scheme though there are notable exceptions such the
archaeological work of Lockyear (2013) which employs correspondence analysis and resamples
the contingency table with fixed marginal totals.
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Bootstrap replicates are created via two main branches of resampling: parametric and
nonparametric. In the parametric bootstrap, a parametric distribution is assumed for the
observed p̂. The parameters are estimated and then the full model is used to replicate the
data. In contrast, the nonparametric bootstrap makes no modeling assumptions and simply
resamples the original observations with replacement. We describe each in more detail and
begin with the nonparametric approach as it is more common in the analysis of randomized
control trials. Employing the bootstrap for our experiments is a multi-treatment exten-
sion of Algorithm 6.1 of Efron and Tibshirani (1993, p47). The nonparametric approach
is distribution free as it resamples the data from each experimental group with replace-
ment. As outcomes are binary, this is equivalent to generating each cell in the table of
observations from a binomial random variable. In the Book Donation experiment the ith

replicate, (Q∗
A, Q

∗
BCF , ..., S

∗
F )i, is generated from the observed (QA, QBCF , ..., SF ) according

to Algorithm 2.

Algorithm 2 Nonparametric Bootstrap Replicates

1. Generate Q∗
A from a Binomial(q, QA/q) random variable. The total of each experi-

mental group is fixed so Q∗
BCF = q −Q∗

A.

2. Generate R∗
AB from a Binomial(r, RAB/r) random variable with R∗

CF = r −R∗
AB.

3. Generate S∗
ABC from a Binomial(s, SABC/s) random variable with S∗

F = s− S∗
ABC .

From an examination of the literature this appears to be, by far, the most common way
bootstrap replicates are created in RCTs (for example, see Barber and Thompson, 2000;
Bachmann, Fairall, Clark, and Mugford, 2007). When creating a bootstrap replicate in this
manner the response of each subject is independent of all other subjects in the experiment.
This form of sampling is analogous to the infinite population assumption from Section 3.1.
One appeal of the nonparametric bootstrap is that it requires no prior knowledge, and thus
no assumptions, of the data generating process. In fact, suppose we used a data generating
process that was more informed by our behavioral types model according to Algorithm 3,
below. Here, we assume each subject belongs to one the behavioral types and the only
difference between Algorithm 3 and the framework of Example 4.2.2 of Chapter 4 is the
infinite population assumption in Step 1. It can be shown that Algorithm 3 is equivalent to
Algorithm 2, that is, the distribution of (Q∗

A, Q
∗
BCF , ..., S

∗
F )i is identical for both algorithms.

Thus, even with it’s distribution free features the nonparametric bootstrap still captures
many of the features of the underlying model.

In the parametric bootstrap we assume the data is created by a parametric model, in
our case the one described in Example 4.2.2 of Chapter 4. We estimate the parameters, p,
from the observations and plug p̂ into the model to generate new replicates. The method
for generating replicates via the parametric bootstrap is described in Algorithm 4.
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Algorithm 3 Alternative Nonparametric Bootstrap Replicates

1. Use the estimated fraction of behavioral types, p̂, to generate an IID sample of subjects
of size n where each subject distributed as a Multinomial(1,p̂) random variable.

2. Randomly assign each subject, without replacement, to the control, weak or strong
treatments.

3. Tabulate the response totals according to the number of behavioral types in each
experimental group to form (Q∗

A, Q
∗
BCF , ..., S

∗
F )i.

Algorithm 4 Parametric Bootstrap Replicates

1. Create an experimental sample of size n where the fraction of each behavioral type
exactly matches p̂.

2. Randomly assign each subject, without replacement, to the control, weak or strong
treatments.

3. Tabulate the response totals according to the number of behavioral types in each
experimental group to form (Q∗

A, Q
∗
BCF , ..., S

∗
F )i.

We see that Algorithm 4 only differs from Algorithm 3 in the first step. Once again this
is exactly the difference between drawing subjects from an infinite population or assigning
subjects to treatments from a finite sample. Thus, as we have argued throughout this thesis
that the finite sample assumptions are preferred for most randomized studies, Step 1 of
Algorithm 4 has a higher fidelity to the data generating process of the behavioral types
model. As stated in Efron and Tibshirani (1993, p55-56), “The parametric bootstrap is
useful in problems where some knowledge about the form of the underlying population is
available, and for comparison to nonparametric analyses.” However, as we saw in section
3.4, this may make very little difference in the resulting confidence regions.

To determine which approach we should use for generating the replicates we use the same
10,000 simulations from Section 6.1, this time constructing a nonparametric bootstrap region
and a parametric region and recording how often each covers the true parameter vector. Here,
the regions are constructed as a result of 40,000 bootstrap replications. The coverage rates
are shown in Table 6.2. The coverage probabilities for the nonparametric bootstrap are too
high, that is, the regions are too large. Meanwhile, the parametric bootstrap appears to
work well, as the coverage rate for the Social Pressure Experiment are close to, and the
bounds for coverage rates contain, the nominal rate. Though the coverage probabilities for
the Book Donation experiment are higher than the nominal rate they are still much closer
than those of the nonparametric bootstrap. In summary, the parametric bootstrap is the
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preferred bootstrap procedure and is also a clear improvement on constructing the confidence
region from the normal approximation.

Social Pressure Book Donation

Coverage Std. Coverage Std.

Rate Error Rate Error

Nonparametric Bootstrap

99% region 99.5% 0.07% 99.7% 0.06%

95% region 97.2% 0.17% 98.1% 0.14%

90% region 94.3% 0.23% 95.7% 0.20%

Parametric Bootstrap

99% region 98.9% 0.10% 99.4% 0.08%

95% region 94.7% 0.22% 96.1% 0.19%

90% region 90.3% 0.30% 90.7% 0.29%

Table 6.2: Coverage rates, and standard error for coverage rates, for parametric and non-
parametric bootstrap confidence regions at 99%, 95% and 90% coverage levels, based on
10,000 simulations.

One final question is how many bootstrap replicates are needed to construct the region?
For the simulations in Table 6.2 we used 40,000 replicates to determine the cutoff of t2∗(1−α).

The 40,000 was motivated by the call of Hesterberg (2008) for tens of thousands of bootstrap
replicates when constructing one dimensional confidence intervals, challenging the suggestion
by Efron and Tibshirani (1993, Ch12) that one or two thousand are sufficient. Table 6.3
shows the coverage probabilities of the regions built from 1,000, 4,000, 10,000 and 40,000
bootstrap replicates. Here, at least for these two experiments, it appears that 1,000 replicates
is sufficient. Though the coverage rates for the Book Donation Experiment improve slightly
with more replicates, there is no significant difference between the coverage rates using 1,000
replicates and the coverage rates using 40,000 replicates.

In summary, the bootstrap confidence regions are a clear improvement on the normal
approximation regions as they correct for any deviations from normality. Also, despite
the common appearance in the literature of generating replicates without replacement, as
described by Efron, the parametric bootstrap outperforms the nonparametric one and, per-
haps, is more in the spirit of the bootstrap as it more closely mimics the data generation
process. Yet, for the Book Donation Experiment, even the coverage rates for the parametric
bootstrap are still (a little) too high. In the next section we show how performing a two
bootstrap process, can improve the coverage levels of the confidence region to reach nominal
coverage rates.
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Social Pressure Book Donation

Coverage Std. Coverage Std.

Rate Error Rate Error

Parametric Bootstrap with 1,000 replicates

99% region 98.8% 0.10% 99.5% 0.07%

95% region 94.6% 0.23% 96.2% 0.19%

90% region 89.6% 0.31% 91.3% 0.28%

4,000 replicates

99% region 99.1% 0.10% 99.5% 0.07%

95% region 95.0% 0.22% 96.1% 0.19%

90% region 90.2% 0.30% 91.3% 0.28%

10,000 replicates

99% region 99.1% 0.09% 99.6% 0.06%

95% region 95.0% 0.22% 96.1% 0.19%

90% region 90.0% 0.30% 91.4% 0.28%

40,000 replicates

99% region 98.9% 0.10% 99.4% 0.08%

95% region 94.7% 0.22% 96.1% 0.19%

90% region 90.3% 0.30% 90.7% 0.29%

Table 6.3: Coverage rates, and standard error for coverage rates, for parametric bootstrap
confidence regions using 1,000, 4,000, 10,000 and 40,000 bootstrap replicates to determine
the region. Some similarities, or differences, may appear to exist solely due to rounding.

6.3 Improved Coverage Rate with the Double

Bootstrap

In the previous section we showed via simulations that even the parametric bootstrap regions
for the Book Donation experiment do not achieve the nominal coverage rates. This is
common for the bootstrap. For example, for a 95% region, suppose that

Prp

(
(p̂− p)′

1

n
Σ̂−1 (p̂− p) ≤ t2∗(.95)

)
̸= 0.95,

where the subscript p on Pr specifies that the underlying data generating process follows
our behavioral types model with true parameter p. The inequality indicates a bias in the



www.manaraa.com

129

t2∗(.95) found from the bootstrap. However, rather than solve for the bias directly, we take

another approach, we adjust the amount of the quantile. That is, instead of using the 95th

percentile of t2∗ we would like to find the quantile, q, such that

Prp

(
(p̂− p)′

1

n
Σ̂−1 (p̂− p) ≤ t2∗(q)

)
= 0.95 . (6.5)

For the Book Donation experiment the coverage rates are higher than the nominal rates.
This indicates the 95% region is too large and we should choose a value for q that is smaller
than 0.95. Since p is unknown we have no way to directly estimate the q in Equation 6.5
either analytically or via simulation. Instead, in the spirit of the bootstrap, we work with p̂
from our table of observations and we find the quantile q̂ such that

Prp̂

(
(p̂∗ − p̂)

′ 1

n
Σ̂∗−1 (p̂∗ − p̂) ≤ t2∗∗(q̂)

)
= 0.95 . (6.6)

Here, Pr p̂() is the probability distribution generated by the bootstrap process parameterized

by the observed p̂. The p̂∗ and Σ̂∗ are the random estimates generated by the bootstrap
process and the t2∗∗ are the simulated t2 that result from a nested, or double bootstrap for
each of the original replicates. This procedure was first proposed by Beran (1987) and an
overview can be found in Davison and Hinkley (1997, section 5.6).

More concretely, for each of the bootstrap replicates indexed by i = 1, ..., b, we generate
p̂∗
i , Σ̂

∗
i and t2∗i = (p̂∗

i − p̂)
′
Σ̂∗−1

i /n (p̂∗
i − p̂). And for each of these bootstrap replicates we

generate a series of m double bootstrap replicates by resampling from the model parameter-
ized by p̂∗

i to give p̂∗∗
ij , Σ̂

∗∗
ij and t2∗∗ij for j = 1, ...,m (for a grand total of b×m simulations).

The process of the double bootstrap allows us to simulate the joint distribution of p̂∗, Σ̂∗, t2∗

and t2∗∗ and estimate q̂. To see this we note that the left side of the inequality in Equation
6.6, by definition, equals t2∗ so we are searching for the value of q̂ to satisfy

Prp̂
(
t2∗ ≤ t2∗∗(q̂)

)
= 0.95 . (6.7)

At first glance, the probability statement in Equation 6.7 may appear ambiguous and we
take a moment to describe it explicitly. In the bootstrap procedure, where the fraction of
behavioral types is p̂, a table of observations is generated, and we call the t-statistic from
the first bootstrap replicate t2∗. From that original replicate we conduct a double bootstrap
and call the first replicate of the double bootstrap t2∗∗. Then t2∗ and t2∗∗ are correlated
random variables and from their joint distribution we can evaluate probability statements
such as the one in Equation 6.7. In this setting define F ∗∗ to be the cumulative distribution
function of t2∗∗ so, by definition, t2∗∗(q̂) = F ∗∗−1(q̂). We must find q̂ such that

Prp̂
(
t2∗ ≤ F ∗∗−1(q̂)

)
= 0.95 .

By the monotonicity of F ∗∗, (t2∗ ≤ F ∗∗−1(q̂)) is equivalent to (F ∗∗(t2∗) ≤ F ∗∗(F ∗∗−1(q̂)) ).
Thus, q̂ must satisfy

Prp̂
(
F ∗∗(t2∗) ≤ q̂

)
= 0.95 . (6.8)
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From our double bootstrap replicates we have all the components to find q̂ from Equation
6.8. We have b replicates, t2∗1 , ..., t2∗b , of t2∗ and for each t2∗i we approximate F ∗∗(t2∗i ) from
the m double bootstrap replicates, that is, F ∗∗(t2∗i ) is the fraction of t2∗∗i1 , ..., t2∗∗im which are
less than t2∗i . This gives b values of F ∗∗(t2∗1 ), ...,F ∗∗(t2∗b ) and we choose the 95th percentile
to be q̂. We summarize this process in Algorithm 5 replacing the 0.95 confidence level with
a general 1− α.

Algorithm 5 Double Bootstrap to construct a 1− α confidence region for p.

1. Calculate p̂ and Σ̂ from the observations.

2. For i = 1, 2, ..., b

(a) Replicate the data according to Algorithm 4.

(b) Calculate p̂∗
i , Σ̂

∗
i and t2∗i .

(c) For j = 1, 2, ...,m

i. Replicate the data, using p̂∗
i , according to Algorithm 4.

ii. Calculate p̂∗∗
ij , Σ̂

∗∗
ij and t2∗∗ij .

End loop

(d) Set F ∗∗(t2∗i ) to the fraction of t2∗∗i1 , ..., t2∗∗im which are less than t2∗i .

End loop

3. Set q̂ to be the 1− α quantile of F ∗∗(t2∗1 ), ..., F ∗∗(t2∗b ).

4. Define the confidence region of p as the set{
p : (p̂− p)′

1

n
Σ̂−1 (p̂− p) ≤ t2∗(q̂)

}

The number of double strap replicates, m, can often be much smaller than b (as argued
by Davison and Hinkley, 1997, p. 178). To evaluate the double bootstrap we choose m=4000
and b = 1000 and again repeat the simulations from the previous section for the parametric
bootstrap. The results are in Table 6.4. Comparing these coverage rates to those for the
parametric bootstrap in Table 6.2 we see that the double bootstrap appears to partially
correct the bootstrap regions, though their is still difference from the nominal coverage
rates. It may be that our choice for the number of replicates, or double bootstrap replicates
are too low, or that the bias in the bootstrap procedure is not fully corrected with just one
iteration of nested bootstrap adjustments. Though computationally more cumbersome we
propose the double bootstrap for our working method and turn to the next step, evaluating
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what we learn about the parameters from the confidence regions.

Book Donation

Coverage Std.

Rate Error

Double Bootstrap

99% region 99.4% 0.08%

95% region 95.8% 0.20%

90% region 90.5% 0.29%

Table 6.4: Coverage rates, and standard error for coverage rates, for double bootstrap con-
fidence regions at 99%, 95% and 90% coverage levels for the Book Donation experiment.
Regions constructed with 4,000 bootstrap replicates and 1,000 double (nested) replicates.

6.4 Examining the Confidence Regions

For the Social Pressure Experiment, the confidence region reveals a greater degree of uncer-
tainty for the parameters than found using the the confidence intervals in Section 5.1. Figure
6.2 shows the 95% confidence region for the Social Pressure experiment using the paramet-
ric bootstrap with 40,000 bootstrap replicates. To represent the five-dimensional region we
project it onto two-dimensional scatter plots for each pair of parameters. The regions are
discrete, as the value of each parameters must be a whole number multiple of 1/47836. For
these scatter plots we show every 47th point (e.g. 1/47836, 48/47836, 95/47836...) so the
representation is approximately discretized to 0.001 (one tenth of 1%). With dotted lines
we also show the 95% confidence bounds for each of the single parameter estimates, based
on the point estimates and standard error in Table 5.6. The plots show the correlation
between the parameter estimates, particularly the strong negative correlation between p̂A
and p̂B, between p̂B and p̂C and between p̂C and p̂D. In general, the strongest correlations
are found along the diagonal of the plots in Figure 6.2, that is, between the estimators
of the “adjacent” parameters such as p̂A and p̂B. To see why, note that p̂A = QA/q and
p̂B = RAB/r − QA/q so both contain QA. The resulting Cov(p̂A, p̂B) is a linear combina-
tion of the covariance of the observations but the term with the highest magnitude will be
Cov(QA,−QA) = −Var(QA), which is negative. The same reasoning applies to the other
adjacent estimates which gives the strong relationship along the diagonal. The confidence
region also shows the degree to which the one-dimensional confidence intervals understate
the variability of the point estimates, as for each parameter, the projected region exceeds
the bounds of the confidence intervals. For example, the 95% confidence interval for pB
is [1.01%, 3.63%] while the region projected onto pB spans [0, 4.62%]. In fact, for every
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parameter except pA, the region projected onto the single parameter includes 0, indicating
a far greater degree of uncertainty.

Figure 6.2: Bootstrap confidence region for the Social Pressure experiment. Each plot
represents a projection onto a two-dimensional plane for a pair of parameters. The dotted
lines indicate the single parameter confidence intervals found in Chapter 5.

The confidence region for the Book Donation experiment also spans a wider range of
values for the parameters than those shown by the confidence intervals. Figure 6.3 shows
the 95% region derived from the double bootstrap with 4,000 bootstrap replicates and 1,000
double (or nested) replicates. Similar to the other experiment, the three-dimensional region
is represented by the two-dimensional projections onto each pair of parameters, shown by the
three scatter plots in Figure 6.3. Here, every point of the region is a multiple of 1/11812 and
the plots include every second point. Again the 95% region, projected onto the parameters,
shows greater upper confidence limits. For example, the projected region for pB exceeds
2.7%, much wider than the confidence interval upper bound of 2.0%. And again p̂A and p̂B
are correlated as are p̂B and p̂C (though the linear relationship is somewhat obscured by the
truncation). Also, the region fails to confirm one of the conclusions from Section 5.2, that
pB + pC > 0. Though not easy to see from the scatter plot of the region projected along pB
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and pC , the handful of points close to the origin, such as (pB, pC) = (1/11812, 1/11812) lie
inside the 95% confidence set. This demonstrates how the confidence regions may lead to
different conclusions than those found from the single parameter approaches of Chapter 5.

Figure 6.3: Double bootstrap confidence region for the Book Donation experiment. Each
plot represents a projection onto a two-dimensional plane for a pair of parameters. The
dotted line indicates the single parameter confidence intervals found in Chapter 5.

6.5 Other Approaches to Confidence Regions

In this section we briefly discuss three other approaches we explored in constructing confi-
dence regions. All merit further consideration.
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6.5.1 Hypothesis Testing

The region found in Section 6.1, uses the normal approximation. It is part of a more
generalized approach based on the duality between confidence regions and hypothesis testing.
For any simple hypothesis test with significance of α and null hypothesis H0 : p = p0,
accepting the test, i.e. not rejecting the null hypothesis, corresponds with including p0 in a
level 1− α confidence region for p. As discussed in Section 6.1, if p̂ is normally distributed
then the test statistic (p̂− p)′ Σ̂−1/n (p̂− p) may be used to form a uniformly most powerful
test to evaluate whether p = p0. The region it forms will be a uniformly most accurate
confidence region. However, as we demonstrated in Sections 6.1 and 6.2 the deviations
from normality are sufficient enough that the distribution of (p̂− p)′ Σ̂−1/n (p̂− p) differs
substantially from the χ2 distribution. However the true distribution of p̂ is challenging to
evaluate analytically.

To demonstrate the challenge we first recall that since the sample sizes of the experimental
groups are fixed there is a one-to-one correspondence between p̂ and the table of observations.
As a concrete example, we focus on the Book Donation experiment as it is the simplest case
with a control and only two levels of treatment. The table of observations is (QA, QBCF ,
RAB, RCF , SABC , SF ) but since the total of each experimental group, q, r, and s are fixed,
only the triple (QA, RAB, SABC) is needed for the likelihood. Let qA, rAB, and sABC represent
the specific realizations of the observed values. In place of p we use the equivalent parameters
of the total of each behavioral type, n = np = (nA, nB, nC , nD). The likelihood function is

likelihood(p, p̂)

= likelihood(n, qA, rAB, sABC)

= Pr n̂(QA=qA, RAB=rAB, SABC=sABC)

= Pr n̂(QA=qA) Pr n̂(RAB=rAB, SABC=sABC | QA=qA)

= Pr n̂(QA=qA)︸ ︷︷ ︸
(a)

Pr n̂(RAB=rAB | QA=qA)︸ ︷︷ ︸
(b)

Pr n̂(SABC=sABC | QA=qA, RAB=rAB)︸ ︷︷ ︸
(c)

.

(6.9)

To see why the likelihood function is intractable we examine each of the components
(a),(b) and (c). First, we see that (a) is found immediately from the hypergeometric. More
complicated is (b) where we must further condition on RA, the number of A-types in the
weak treatment, that is

(b) = Pr n̂(RAB=rAB | QA=qA)

=

min(rAB ,nA)∑
i=0

Pr n̂(RA=i, RB=rAB − i | QA=qA)
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=

min(rAB ,nA)∑
i=0

Pr n̂(RA=i | QA=qA) Pr n̂(RB=rAB − i | QA=qA, RA=i)

=

min(rAB ,nA)∑
i=0

(
nA−qA

i

)(
n−nA

r−i

)(
n−qA

r

) (
nB

rAB−i

)(
n−nB−i
r−rAB

)(
n−i
r−i

) (6.10)

where the last substitution holds as both probabilities can also be evaluated from the hy-
pergeometric distribution. With multiple factorials, the summation in Equation 6.10 is
challenging to evaluate. Furthermore, (c) is even more complicated involving a double sum-
mation. The intractable likelihood hampers our ability to derive a likelihood ratio test, and
without such a test there is no obvious optimal test procedure.

Even without optimality properties guaranteed, the distribution of (p̂− p)′ Σ̂−1/n (p̂− p)
is similar enough to χ2 that it is still a useful test statistic. In place of a known distribution
we may use Monte Carlo simulation to determine the distribution, and hence the critical
values of (p̂− p)′ Σ̂−1/n (p̂− p) under the null hypothesis p = p0. This means that at every
possible point in the confidence region we must carry out enough Monte Carlo simulations,
say 10,000, to obtain the critical values and evaluate whether the point is in the acceptance
region. In a three parameter problem it can be shown there are (n + 1)(n + 2)(n + 3)/6
possible points in the parameter space. For the Book Donation experiment, with n=11,812,
this is more than 1011 points. But we may take advantage of the convexity of the confidence
region, and by solving for reasonable values of the parameters, we can test for far fewer
points.

Another possible test statistic is the maximummodulus, or maximal deviation, attributed
to Tukey (1953). This measures how far each of the components of p̂ are from a tested p0,
after standardization. Define pz to be the difference between p̂ and p0 after standardization,

pz = (p̂− p0)
′ Σ̂−1/2/

√
n.

The maximum modulus statistic is the component of pz with the largest deviation from 0
or

max {|pzi| : i = 1, ..., l} .

In our experience, applying the procedures to a number of experiments, neither method
dominates the other. The maximum modulus often demonstrates higher power when the
significance level is 10% or higher but any advantage diminish at lower sizes. The regions do
look quite different with the (p̂− p)′ Σ̂−1/n (p̂− p) leading to elliptical regions while the
maximum modulus results in confidence sets with sharp, angular boundaries.

One advantage of constructing regions via hypothesis testing is we may employ tests
which cater to particular research objectives. A recent example is the work of Benjamini,
Madar, and Stark (2013) to create non-centered confidence bounds to maximize the discern-
ment of the sign of an effect, which decreases the confidence bounds. Their assumptions
of independence between samples and symmetric distributions for the parameter estimates
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does not hold for our setting. However, the work models how more flexible regions could
be developed, which in the case of our applications, lead to an enhanced ability to detect
non-zero effects. Developing such regions may be a promising area for future inquiry.

6.5.2 A Bayesian Approach

Given the wealth of information from Get-Out-The-Vote experiments we might begin an
analysis of the Social Pressure experiment with prior knowledge about the range of possible
values for the parameters p. To approach the problem from a Bayesian perspective we
translate this knowledge to some prior distribution, π(p), which is used to compute the
posterior distribution, g(), given observed values. To describe the process more clearly we
introduce a notational change in this section. We denote the parameter estimates from the
observed values as p̂obs, a fixed number, which we distinguish from the parameter estimates

as a random variable which we write as P̂. We reserve p̂ as a specific value for the random
variable P̂. Thus, the posterior distribution of p is

g(p|p̂obs) =
Pr p(P̂ = p̂obs) π(p)

Pr(P̂ = p̂obs)
. (6.11)

Equation 6.11 shows the posterior distribution is proportional to the likelihood times the
prior, as the denominator of the right hand side is considered a scale parameter for the
posterior to integrate to 1. We still have the same analytical obstacles with the likelihood
which motivated the Monte Carlo simulations in Section 6.5.1. Because the likelihood,
Pr p(P̂ = p̂), is difficult to evaluate in closed form we cannot directly compute the posterior

confidence regions. Fortunately, given p it is easy to simulate P̂. Combined with the prior,
we may simulate (p, P̂) from the joint density

g(p, p̂) = Pr p(P̂ = p̂)π(p).

After producing simulated values of (p, P̂), if there is a sufficient number of values so that P̂
is“close” to p̂obs we can estimate the density g(p, p̂) in the neighborhood of p̂obs to obtain an
approximation of g(p | p̂obs). This technique is called Approximate Bayesian Computation
(ABC) and is based on an idea first proposed by Rubin et al. (1984) though much of it’s
development has been from applications in the biological sciences (see Beaumont, Zhang,
and Balding, 2002; Beaumont, 2010). With the posterior distribution, we can then calculate
1-α credible regions, the Bayesian equivalent of confidence regions.

There are a number of challenges to constructing regions via ABC. The first being how
close must a simulated P̂ be to p̂obs, to be “close enough”? For continuous P̂ some threshold,

for some distance metric, must be specified. Even for discrete P̂ such as in our applications,
where it is a multiple of 1/n, it may be challenging to obtain enough values at P̂ = p̂obs

and using points in the neighborhood of p̂obs may be desired. The next question is how to

obtain enough simulated values of (p, P̂) with P̂ = p̂obs so that there are enough p’s to
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estimate g(p | p̂obs). In our experience, if the sample size of the experiment is small and if
the dimension of p is low, then repeated sampling from the joint distribution may provide
a large enough pool to approximate g(). For larger n, or for larger dimensions this may not

be the case. To obtain more sample points in the neighborhood of P̂ = p̂obs one solution is
importance sampling (see Ripley, 2009) which over samples from values of p likely to lead

to values of P̂ near p̂obs. Another tack we tried was to use Markov Chain Monte Carlo
methods to create a Markov Chain with a stationary distribution equal to g(p | p̂obs). This
is described in more detail by Marjoram, Molitor, Plagnol, and Tavaré (2003).

Another benefit of the ABC technique is that we can apply it to one dimensional pa-
rameters as well. Suppose our interest was primarily on pA. In the same manner used to
approximate g(p | p̂obs) we may use ABC to approximate the marginal distribution for pA,
g(pA | p̂obs), by estimating the univariate distribution instead of the multivariate one. Recall
that the main motivation for this chapter was to account for the joint significance of single
value parameter estimates. From a Bayesian perspective this is not a concern as the marginal
posterior distribution can be accessed immediately and provides all of the information need
to create a level 1− α credible interval.

For all examples we examined, the ABC methods lead to smaller regions and intervals
than other methods we have discussed in this chapter and the previous one. The smaller
ABC regions were found even using fairly “non-informative” priors. For example, in the
Book Donation experiment a non-informative prior might be independent uniform priors on
[0,.2] for pA and [0,.1] for pB and pC . Once one accepts the Bayesian view of probability,
the intervals are much smaller, but this is more a result of the Bayesian perspective than
any particular methodological advantage. We offer no argument either for or against a
Bayesian view but we acknowledge that this thesis has a clear frequentist bent because we
have presented the behavioral types and the Neyman-Rubin Causal Model as entrenched in
frequentist notions of parameters as fixed features of populations. There is nothing inherently
frequentist about the potential outcomes framework as Imbens and Rubin (1997) present
many of the ideas from their earlier work from a Bayesian perspective.

6.5.3 Confidence regions of optimal expected size

Our difficulties with the hypothesis testing approach of section 6.5.1 stemmed from an in-
ability to find a uniformly most powerful test for a simple hypothesis. An alternative route is
to choose a different criteria of optimality and in this section we consider finding confidence
regions of smallest expected size. We begin with a review of decision theoretic concepts,
building on the Bayesian notions introduced in the previous section, which allow for a dis-
cussion of optimality. We continue to frame the concepts in terms in terms of our problem
(e.g. our decision rules are choices of confidence region) using notation which differs from
most treatments of decision theory.

We define the least favorable prior (often called the “least favorable alternative”). Sup-
pose we have a risk function, Risk(p, c), where p is the parameter and c, or c(p̂), is a
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confidence region procedure (such as any of the ones described in this chapter) based on the
observed p̂. Let C represent the set of all possible confidence regions. For any prior distri-
bution π(p) there is a Bayes rule region, cπ, to minimize the average risk, Eπ [Risk(p, c)],
for all c of C. The least favorable prior, π∗, is the prior whose Bayes rule confidence region,
cπ∗ , has greater average risk than the Bayes rule for any other prior. That is,

Eπ [Risk(p, cπ∗)] ≥ Eπ [Risk(p, cπ)] for all π.

Next, we describe our research question in terms of minimax risk, an optimality criteria
which holds in either the Bayesian or frequentist perspectives. Suppose we constrain our
parameter p to some restricted set Θ (in our case p is a real-valued vector whose components
sum is at most 1). For any risk function Risk(p, c), over the parameter space Θ we can find
the minimax risk,

inf
c∈C

sup
p∈Θ

Risk(p, c).

A confidence region that attains the minimax risk, a minimax region, will have the “best
worst case” risk. There exists a duality between these two concepts: the Bayes rule confi-
dence region for the least favorable prior is the minimax confidence region. In many cases it
may be very hard to find a minimax estimator but one may be able to find or approximate
the least favorable prior. If this is possible, and we can solve for it’s Bayes Rule, we will
have a minimax estimator.

Evans, Hansen, and Stark (2005) consider the risk function of the expected size (length,
area, volume, etc.) of a region, that is

Risk(p, c) = Ep( size of c(p̂) ),

where p̂ is the random quantity that will determine the region. In their work they show that
for any prior, the confidence region constructed by a likelihood ratio test has the smallest
expected size; that is, is the Bayes rule region. Furthermore, suppose that the set of possible
priors, Γ, is convex. A least favorable prior, π∗, for Θ may be found and the confidence
region constructed with the likelihood ratio test for π∗ will be a minimax expected size
region over the parameter space Θ. In general, analytically finding π∗ is only possible for
simple cases. However, if Θ may be approximated by a finite number of points, Schafer,
Stark, Evans, and Hansen (2003); Schafer and Stark (2009) develop an algorithm to find π∗

and the corresponding minimax expected size region.
The algorithm does not require a closed form solution of the likelihood and makes use

of simulation methods to approximate it, so may be applied to our model. We consider this
work an important contribution that finds optimal regions for a very useful measure of risk.
It also incorporates constraints put upon the parameters. To our knowledge, there have
been no new applications of the method though we think it a very broad approach useful for
situations, such as our own estimation problem, when typical theoretical restrictions, such
as normality assumptions, do not hold.



www.manaraa.com

139

6.6 Discussion

In this chapter, we show how construction of confidence regions can lead to a more complete
understanding of the variation of the estimated parameters, the proporttion of the behavioral
types in an experimental sample. We show that even though the normal approximation
does not hold, and the likelihood function is challenging to evaluate analytically, confidence
regions which achieve their nominal levels can be attained. We propose finding the regions
using a double bootstrap approach but we describe other methods, all simulation-based,
which merit further exploration. We consider this chapter an initial step towards what
could be a much deeper focus of research.

We have only considered the simplest case of experiments with multiple, and strictly
ordered, treatments without noncompliance. However, these methods immediately apply to
the experiments with noncompliance, such as the ones described in Chapter 2 and in section
5.4. In all cases the objective is the same; we must estimate the fraction of behavioral
types. As long as the parameters p are identifiable they may be estimated by p̂, and we
may construct regions in the same manner.
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Chapter 7

Conclusion

In this research we show that for randomized control trials with binary outcomes, each
individual in the study may be classified as one of a finite number of distinct types. We call
these behavioral types because they characterize the individual’s complete reaction, their
measured response and how they receive treatment, to the assignment of each possible
experimental group. In this setting, the contingency table that summarizes the observed
results is generated by randomly allocating these various behavioral types to the different
experimental groups. Since the model is parameterized by the unknown proportions of the
different behavioral types, every statistical aspect of the experiment, such as the various
average treatment effects, may be written as a function of these proportions. This suggests
a different focus for the estimation problem. Instead of finding a particular treatment effect,
the ultimate goal can be seen as estimating proportions of behavioral types. With this frame
of reference, the effect of a certain treatment will be be most accurately represented as the
fraction of the experimental sample for which the treatment has an effect.

While this work was motivated by estimation problems in get-out-the-vote (GOTV)
campaigns, the behavioral-types approach may be used in a number of settings, as long as
the the experimental design includes a few key features. While we have narrowed our analysis
to outcomes that are binary, the results can be easily extended to categorical responses.
The more categories for the outcome, the more behavioral types, though this total may be
reduced if outcome categories are ordinal. Another common feature is noncompliance to the
assigned treatment, which is essential for experiments with human subjects who may choose
to adhere to the assigned treatment, or not. When compliance is unknown, or perfect, the
estimation problem becomes simpler as multiple behavioral types may be combined into one.
The treatment assigned and the treatment received must also be categorical and, again, the
estimating problem will be easier if the categories are ordinal. Finally, the experiment should
feature some restrictions which limit the treatment received or individual responses. These
restrictions may be explicit, such as monotonicity or the exclusion restrictions, or they may
be implicit in the experimental design, such as no individuals assigned to control receive the
treatment (or, there are no “alwaystakers”).
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Through the examples and applications in this work we strive to show how the behavioral-
types approach is general enough for use in a variety of randomized studies. We introduced
many of the concepts by examining the average treatment effect for the treated of An-
grist et al. (1996), since this is a well understood work, with explicit assumptions that
can be readily recognized as restrictions. All examples, those from Sections 4.2.2, 4.2.3
and the four applications from Chapter 5, pertain to investigations with multiple levels of
(mostly ordered) treatment. A behavioral-types approach is well suited to multi-treatment
experiments because it distills these often complex designs into an estimation problem of
a manageable number of types. In sections 4.2.3 and 5.3 the experimental designs contain
violations of the stable unit treatment value assumption which allow estimation of spillover
effects. In Sections 4.2.3 and 5.4 we address experiments whose parameters are estimated by
an overdetermined systems of equations. In Sections 5.3 we have a complex randomization
scheme and even though we are not able to fully identify the model, the partial identifica-
tion of parameters still results in useful conclusions. In Section 5.4 we show that, even if the
orderings of the treatments are ambiguous, we can still proceed with the estimation prob-
lem. Each of these examples present their own complications, but since the eventual goal is
to find a proportion of types, each inference problem can be understood as one of discrete
valued estimation. Once the parameters, meaning the number of distinct behavioral types,
are explicitly identified, the inference problem is addressed by (often well) known statistical
techniques.

Though a behavioral-types approach shifts the interpretation of the causal effects the
experiment is designed to measure, sometimes this has no impact on how we evaluate the
data. For example, from a behavioral types perspective, the treatment received is as much of
an outcome as the binary response of interest, even though this does not change the statistical
analysis. Viewing experimental subjects as belonging to a certain behavioral type suggests,
particularly for small sample sizes, an analysis via Fisher randomization inference along the
lines of what was described in Section 3.6. In that section, the attributable effect due to
treatment is interpreted as the number of complier-if-treated-respond subjects assigned to
the treatment group. An analysis of the effects would not be impacted. Other analyses with
a behavioral-types approach would lead to the same conclusion. For instance, a hypothesis
test of no effect of (perhaps multiple levels of) treatment is equivalent to there being only
behavioral types who always respond or never respond. Both interpretations would likely
lead to an analysis via a Fisher exact test, resulting in the same observed p-value.

In other settings, the behavioral-types approach leads to meaningful differences in either
how the results are viewed or to different conclusions altogether. We saw this in three of the
applications in Chapter 5. For example, in Section 5.2, while we agree with the conclusions of
the author, we differ in our interpretation of the causal effect of interest and how this relates
to the existence of certain kinds of behavioral types. In Section 5.3, taking a behavioral
types perspective helps illuminate that a Fisher sharp null hypothesis test can be used to
evaluate the existence of a spillover effect. We find stronger evidence for the presence of
the indirect effect. And in Section 5.4 we show that understanding the experimental design
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through a behavioral types lens reveals treatment-for-the-treated effects may be estimated,
thus furthering the analysis.

The methods presented in this research could be improved in a number of ways. While
our focus has been on sample average treatment effects, there has been much research into
conditional average treatment effects, that is the average treatment effect for individuals
with certain attributes (see Imbens and Rubin, 2015, p269). From a behavioral types view,
the approach is the same and the statistical endeavor centers around estimating the fraction
of behavioral types for the subset of subjects with certain covariate values. Though we have
confined ourselves to randomized controlled trials, the parameter identification exercises in
Chapters 2 and 4 pertain to observational studies as well. The lack of randomized assign-
ment to experimental group presents many difficulties and inference under this context is
addressed by Rosenbaum (2002). Also, the important restriction of monotonicity may not
hold for medical experiments where receiving a treatment cannot be guaranteed to lead to
higher outcomes. For example, some cancer patients fare better and some fare worse under
chemotherapy than if no treatment was administered. A behavioral-types approach might
still be fruitful without monotonicity, though the identification of the parameters will be
more complicated.

Furthermore, a number of recent statistical publications address issues material to this
work such as inference with noncompliance and outcomes that are discrete and finite. And
many apply randomization based inference which do not require large sample sizes. Examples
include Keele et al. (2017), Sekhon and Shem-Tov (2017), Ding and Miratrix (2017), Ding
and Dasgupta (2016) and Kang, Peck, and Keele (2016). Exploring the connections between
these studies, and our own, would surely yield useful insights to incorporate into this work.

Future research could also look further into issues of multiparameter inference and mul-
tiple testing. Our exploration of the topic in Chapter 6 is a beginning to this line of inquiry.
We illustrate the dependency between the multiple parameter estimates and the degree to
which one dimensional intervals overstate the confidence level around parameter estimates.
Aside from bootstrap methods, we suggest three alternative routes to constructing confidence
regions and all merit further investigation.

Finally, we have aimed this work for practitioners of social science field experiments,
including those of GOTV campaigns. We hope our work clarifies the underlying mechanisms
at work in experiments with categorical outcomes and adds a new perspective to direct the
resulting statistical analysis.
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